scholarly journals Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption

Author(s):  
Pamela Ramirez-Vidal ◽  
Fabián Suárez-García ◽  
Rafael L. S. Canevesi ◽  
Alberto Castro-Muñiz ◽  
Philippe Gadonneix ◽  
...  
2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


2020 ◽  
Vol 86 (8) ◽  
pp. 32-37
Author(s):  
V. V. Larionov ◽  
Xu Shupeng ◽  
V. N. Kudiyarov

Nickel films formed on the surface of zirconium alloys are often used to protect materials against hydrogen penetration. Hydrogen adsorption on nickel is faster since the latter actively interacts with hydrogen, oxidizes and forms a protective film. The goal of the study is to develop a method providing control of hydrogen absorption by nickel films during vacuum-magnetron sputtering and hydrogenation via measuring thermoEMF. Zirconium alloy E110 was saturated from the gas phase with hydrogen at a temperature of 350°C and a pressure of 2 atm. A specialized Rainbow Spectrum unit was used for coating. It is shown that a nickel film present on the surface significantly affects the hydrogen penetration into the alloy. A coating with a thickness of more than 2 μm deposited by magnetron sputtering on the surface of a zirconium alloy with 1% Nb, almost completely protects the alloy against hydrogen penetration. The magnitude of thermoemf depends on the hydrogen concentration in the zirconium alloy and film thickness. An analysis of the hysteresis width of the thermoEMF temperature loop and a method for determining the effective activation energy of the conductivity of a hydrogenated material coated with a nickel film are presented. The results of the study can be used in assessing the hydrogen concentration and, hence, corrosion protection of the material.


2018 ◽  
Vol 69 (6) ◽  
pp. 1468-1472
Author(s):  
Radu Mirea ◽  
Mihai Iordoc ◽  
Gabriela Oprina ◽  
Gimi Rimbu

The paper aims to present the investigation of H2 adsorption capacity in metal doped nanostructured materials, by using two methods. Carbonic materials are considered to be one of the most promising materials to be used for hydrogen adsorption and storage. They have different applications and one of the most important is considered to be fuel cells technology. By using metals for doping these materials, the adsorption capacity increases, thus approaching the target of 6.5% weight ratio of H2 adsorbed in a substrate. Within these investigations multi-wall nanotubes and poly-aniline have been used as substrates. The poly-aniline has been prepared and doped in laboratory while the nanotubes used in experiments have been purchased from the market and afterwards doped in laboratory. The doping procedure consists of a physical-chemical method which involves salts of the metal for doping and the use of ultrasounds in order to activate the substrate for doping. The adsorption capacity of the carbonic materials has been determined by using spill over phenomena in a PCT Pro-User apparatus, provided by SETARAM and also by cyclic voltametry, by using VoltaLab-40 apparatus. In order to investigate the adsorption capacity of the nanostructured carbonic materials, the experiments have been carried out at different pressures. Both substrates have been characterized in order to determine their porosity, BET surface and structure. The collected data have been processed by using the PCT Pro-User apparatus�s software. The results have been compared with the available data from literature and a good consistency was found.


2019 ◽  
Vol 123 (43) ◽  
pp. 26662-26672 ◽  
Author(s):  
Björn Arndt ◽  
Marcus Creutzburg ◽  
Elin Grånäs ◽  
Sergey Volkov ◽  
Konstantin Krausert ◽  
...  

Author(s):  
Hasnain Sajid ◽  
Sana Malik ◽  
Umer Rashid ◽  
Tariq Mahmood ◽  
Khurshid Ayub

2021 ◽  
Vol 23 (7) ◽  
pp. 4277-4286
Author(s):  
S. V. Chuvikov ◽  
E. A. Berdonosova ◽  
A. Krautsou ◽  
J. V. Kostina ◽  
V. V. Minin ◽  
...  

Pt-Catalyst plays a key role in hydrogen adsorption by Cu-BTC at high pressures.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


Sign in / Sign up

Export Citation Format

Share Document