Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect

Author(s):  
Xuejiao Tao ◽  
Yuman Zhou ◽  
Kun Qi ◽  
Chaozhong Guo ◽  
Yunling Dai ◽  
...  
2019 ◽  
Vol 5 (2) ◽  
pp. 6-18
Author(s):  
V. A. Goldade ◽  
◽  
S. V. Zotov ◽  
V. M. Shapovalov ◽  
V. E. Yudin ◽  
...  

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Yixin Liu ◽  
Zhen Li ◽  
Yutong Feng ◽  
Juming Yao

AbstractConductive yarn is an important component and connector of electronic and intelligent textiles, and with the development of high-performance and low-cost conductive yarns, it has attracted more attention. Herein, a simple, scalable sizing process was introduced to prepare the graphene-coated conductive cotton yarns. The electron conductive mechanism of fibers and yarns were studied by the percolation and binomial distribution theory, respectively. The conductive paths are formed due to the conductive fibers' contact with each other, and the results revealed that the connection probability of the fibers in the yarn (p) is proportional to the square of the fibers filling coefficient (φ) as p ∝ φ2. The calculation formula of the staple spun yarn resistance can be derived from this conclusion and verified by experiments, which further proves the feasibility of produce conductive cotton yarns by sizing process.


2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.


2005 ◽  
Vol 75 (10) ◽  
pp. 741-744 ◽  
Author(s):  
Anindya Ghosh ◽  
S. M. Ishtiaque ◽  
R. S. Rengasamy
Keyword(s):  

2020 ◽  
Vol 32 (5) ◽  
pp. 677-690
Author(s):  
Xinjin Liu ◽  
Xinxin Yan ◽  
Xuzhong Su ◽  
Juan Song

PurposeWith the popularization of electronic products, the electromagnetic radiation pollution has been the fourth largest pollution after water, air and noise pollution. Therefore, electromagnetic shielding property of textiles is attracting more attention. In this paper, the properties of electromagnetic shielding yarns and fabrics were studied.Design/methodology/approachTen kinds of yarn, stainless steel short fiber and polyester blend yarn with three different blending ratios T/S 90/10, T/S 80/20 and T/S 70/30, stainless steel short fiber, polyester and cotton blend yarn with blending ratio C/T/S 35/35/30, core-spun yarn with one 30 um stainless steel filament C/T28tex/S(30 um), core-spun yarn with two 15 um stainless steel filaments (C/T28tex/S(15 um)/S(15 um)), twin-core-spun yarn with one 30 um stainless steel filament and one 50D spandex filament C/T28tex/S(30 um)/SP(50D), sirofil wrapped yarn with one 30 um stainless steel filament feeding from left S(30 um)+C/T28tex, sirofil wrapped yarn with one 30 um stainless steel filament feeding from right C/T28tex+S(30 um), sirofil wrapped yarn with two 15 um stainless steel filaments feeding from two sides S(15 um)+C/T28tex+ S(15 um), were spun. The qualities of spun yarns were measured. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven.FindingsThe tested results show that comparing to the T/S 80/20 blend yarn, the resistivity of composite yarns with the same ratio of the stainless steel filament is smaller. The possible reason is that comparing to the stainless steel short fiber, the conductivity of stainless steel filament is better because of the continuous distribution of stainless steel in the filament. Comparing with the core-spun yarn, the conductivity of the sirofil wrapped yarn is a little better. Comparing to the fabric woven by the blend yarn, the electromagnetic shielding of the fabric woven by the composite yarn is better, and comparing to the fabric woven by the core-spun yarn, the electromagnetic shielding of the fabric woven by the sirofil yarn is a little better. The possible reason is that the conduction network can be produced by the stainless steel filament wrapped on the staple fiber yarn surface in the fabric, and the electromagnetic wave can be transmitted in the network.Originality/valueIn this paper, the properties of electromagnetic shielding yarns and fabrics were studied. Ten kinds of yarn, including three stainless steel short fiber and polyester blend yarns, one stainless steel short fiber, polyester and cotton blend yarn, two core-spun yarns, one twin-core-spun yarn, three sirofil wrapped yarn, were spun. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven. The effects of fabric warp and weft densities, fabric structures, yarn kinds, yarn distributions in the fabric on electromagnetic shielding were analyzed.


2019 ◽  
Vol 19 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Yuzheng Lu ◽  
Yang Wang ◽  
Weidong Gao

Abstract In this study, the wicking properties of ring and compact-siro ring spun staple yarns were compared. The twist level, which is related to the structure of the staple yarns, was found to significantly influence the wicking property of the two kinds of yarn. Polyester staple fibers with 1.33 dtex × 38 mm were selected as the staple fiber material, and the effect of the twist level on the wicking property was investigated using the capillary rise method. The results show that with a decreasing twist coefficient, the wicking height increases with a decrease in yarn compactness. The compact-siro spun yarn showed better wicking properties owing to it special ply yarn structure. Furthermore, the tension property of the yarns decreased significantly with a decrease in the twist coefficient. Compact-siro spinning was carried out to obtain staple yarns with lower twist coefficients, and the yarns showed great improvement in terms of yarn strength, fiber straightness, and wicking properties. Thus, compact-siro spinning is an efficient method to improve the wicking properties of staple yarns.


Sign in / Sign up

Export Citation Format

Share Document