MnCo2O4/Ni3S4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability

Author(s):  
Qisheng Fang ◽  
Mengxuan Sun ◽  
Xiaohe Ren ◽  
Yongxiu Sun ◽  
Yijun Yan ◽  
...  
2016 ◽  
Vol 28 (45) ◽  
pp. 9979-9985 ◽  
Author(s):  
Xuefeng Tong ◽  
Fan Zhang ◽  
Bifa Ji ◽  
Maohua Sheng ◽  
Yongbing Tang

RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9181-9191 ◽  
Author(s):  
Qiuli Chen ◽  
Jinfeng Sun ◽  
Zhengluo Wang ◽  
Zhiwei Zhao ◽  
Yanru Zhang ◽  
...  

Hierarchical micro-/mesoporous N/O-enriched carbon was scalably fabricated, and exhibited high gravimetric/volumetric capacitances, a large energy density and long-term cycling stability for supercapacitors with aqueous and organic electrolytes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhenyuan Ji ◽  
Kai Liu ◽  
Wenyao Dai ◽  
Dongwei Ma ◽  
Hongyan Zhang ◽  
...  

A hybrid supercapacitor with decent energy density and cycling stability was constructed by using Co-NiS/NCDs flower-like hierarchitectures and PPD/rGO nanosheets as cathode and anode, respectively.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Sign in / Sign up

Export Citation Format

Share Document