Sewage sludge/biomass ash based products for sustainable construction

2014 ◽  
Vol 67 ◽  
pp. 117-124 ◽  
Author(s):  
Primož Pavšič ◽  
Ana Mladenovič ◽  
Alenka Mauko ◽  
Sabina Kramar ◽  
Matej Dolenec ◽  
...  
Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


2017 ◽  
Vol 20 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Martina Záleská ◽  
Zbyšek Pavlík ◽  
Milena Pavlíková ◽  
Lenka Scheinherrová ◽  
Jaroslav Pokorný ◽  
...  

2018 ◽  
Vol 44 ◽  
pp. 00196
Author(s):  
Marta Wójcik ◽  
Feliks Stachowicz

Biomass plays an important role amongst renewable energy sources and for this reason, it is sometimes called as “future fuel”. According to different statistics, the share of biomass in renewable energy production is in excess of 50% and rising. The main disadvantage of biomass combustion in power plants is the production of combustion by-products, namely fly and bottom ash. In line with the sustainable development and waste hierarchy, biomass combustion by-products should be managed in different sectors of economy. Due to the specific properties, biomass ash might be applied as an effective reagent in sewage sludge management. This article shows the SWOT analysis (strengths, weaknesses, opportunities and threats) associated with the use of biomass combustion by-products in sewage sludge treatment. The presented analysis could constitute the initial stage in implementation of new method in a big way in treatment plants.


2020 ◽  
Vol 6 (1) ◽  
pp. 98-113 ◽  
Author(s):  
Rawa Shakir Muwashee

This study devotes to investigate the use of Raw Sewage Sludge (RSS) and Rice Husk Ash (RHA) to obtain sustainable construction materials. This study focuses on the evaluation of using cement-based materials having RSS and RHA. The methodology of this study could be summarized by replacing water by RSS and replacement of 10 %RHA from the weight of cement. Five groups have been used with different ratios of RSS/binder; for each group with and without RHA. In addition, the sand/binder ratio has been changed for Group 2. This method includes testing the flowability, compressive strength, Total Water Absorption (TWA) and density for the mortar mixes containing these materials. The results indicate that mixes with added materials encourage the results compared to control mixes. Addition of RHA considerably decreases flowability; however it enhanced compressive strength for all groups especially for Groups 3, 4 and 5.  Moreover, the minimum values of TWA were recorded when 10% RHA was utilized as a cement replacement for both RSS and water mixes. Finally, it was found that replacing RSS by water, leads to the reduction in flowability and TWA in all mixes especially at 10% RHA; whereas the strength and density increase.


2022 ◽  
Vol 12 (1) ◽  
pp. 434
Author(s):  
Michelina Catauro ◽  
Giovanni Dal Dal Poggetto ◽  
Severina Pacifico ◽  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
...  

In this study, we compared the chemical-physical, antibacterial, and cytotoxicity properties of silico-aluminous and silicate materials for outdoor (green roof, planted walls) and indoor (urban farms, indoor microgreen gardens) cultivation purpose in a context of sustainable construction. Glasses and lightweight aggregates were tailored starting from waste, by-product, and post-consumer and bioproducts (packaging glass cullet, cattle bone flour ash, vegetable biomass ash, spent coffee ground, degreased from biomass of prepupae of Black Soldier Flies) mixed together with a national ferruginous red clay, quarry scrap pumice and, if necessary, with K2CO3 of reagent grade. The first type of material was obtained by melting at 1200 °C and the second one by powder sintering at 1000 °C. All specimens, subjected to antibacterial test, showed both low zone of inhibitions towards two Gram-negative and two Gram-positive bacterial strains. A cytotoxicity test on mouse embryonic fibroblast NIH-3T3 cell line directly exposed to the investigated materials was performed at three different exposure times (1 h, 3 h, and 6 h). Data acquired highlighted that the materials positively affected redox mitochondrial activity of the fibroblast cells. The concentrations of leachate heavy metals detected on selected materials in water at room temperature after 24 h were lower than the European law limit and an interesting release of P, K, and N nutrients was noted for those formulations designed for agronomic purposes. pH, falling on average within the 6.5–7.5 range, is optimal for most crops, and the specific conductivity <2 dS/m indicates no depression danger for crops. Both bulk density <1200 kg/m3 and porosity over 50% seem to ensure good performance of lightening, drainage, water reservation, and oxygenation of the roots.


Sign in / Sign up

Export Citation Format

Share Document