scholarly journals A New System of Sustainable Silico-Aluminous and Silicate Materials for Cultivation Purpose within Sustainable Buildings: Chemical-Physical, Antibacterial and Cytotoxicity Properties

2022 ◽  
Vol 12 (1) ◽  
pp. 434
Author(s):  
Michelina Catauro ◽  
Giovanni Dal Dal Poggetto ◽  
Severina Pacifico ◽  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
...  

In this study, we compared the chemical-physical, antibacterial, and cytotoxicity properties of silico-aluminous and silicate materials for outdoor (green roof, planted walls) and indoor (urban farms, indoor microgreen gardens) cultivation purpose in a context of sustainable construction. Glasses and lightweight aggregates were tailored starting from waste, by-product, and post-consumer and bioproducts (packaging glass cullet, cattle bone flour ash, vegetable biomass ash, spent coffee ground, degreased from biomass of prepupae of Black Soldier Flies) mixed together with a national ferruginous red clay, quarry scrap pumice and, if necessary, with K2CO3 of reagent grade. The first type of material was obtained by melting at 1200 °C and the second one by powder sintering at 1000 °C. All specimens, subjected to antibacterial test, showed both low zone of inhibitions towards two Gram-negative and two Gram-positive bacterial strains. A cytotoxicity test on mouse embryonic fibroblast NIH-3T3 cell line directly exposed to the investigated materials was performed at three different exposure times (1 h, 3 h, and 6 h). Data acquired highlighted that the materials positively affected redox mitochondrial activity of the fibroblast cells. The concentrations of leachate heavy metals detected on selected materials in water at room temperature after 24 h were lower than the European law limit and an interesting release of P, K, and N nutrients was noted for those formulations designed for agronomic purposes. pH, falling on average within the 6.5–7.5 range, is optimal for most crops, and the specific conductivity <2 dS/m indicates no depression danger for crops. Both bulk density <1200 kg/m3 and porosity over 50% seem to ensure good performance of lightening, drainage, water reservation, and oxygenation of the roots.

2014 ◽  
Vol 67 ◽  
pp. 117-124 ◽  
Author(s):  
Primož Pavšič ◽  
Ana Mladenovič ◽  
Alenka Mauko ◽  
Sabina Kramar ◽  
Matej Dolenec ◽  
...  

2005 ◽  
Vol 11 (2) ◽  
pp. 184-193 ◽  
Author(s):  
Silvia Miret ◽  
Els M. De Groene ◽  
Werner Klaffke

Cytotoxicity testing allows determining whether a compound or extract contains significant quantities of biologically harmful chemicals. Cytotoxicity test methods are useful for screening because they serve to separate toxic from nontoxic materials, providing predictive evidence of compound safety. However, a wide range of assays measuring different aspects of cell death is available in the market, but it is difficult to determine which one(s) to use when evaluating a selection of compounds. The objective of this study was to compare different commercially available in vitro assays for cytotoxicity in HepG2 cells according to its sensitivity, reproducibility, simplicity, cost, and speed. The assays evaluated included Alamar Blue for the measurement of mitochondrial activity, ATPlite and ViaLight for the determination of cellular adenosine triphosphate (ATP), ToxiLight as an indicator of cellular necrosis, and Caspase-3 Fluorometric Assay, Apo-ONE Caspase-3/7 Homogeneous Assay, and Caspase-Glo for the determination of caspase-3/7 activity. All assays were performed using 4 compounds of previously reported cytotoxic activity: DMSO, butyric acid, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and camptothecine. Overall, it was concluded that the best way to evaluate the potential cytotoxicity of a compound is to employ a battery of assays that focus on different aspects of cell death. In this case, the focus has been on ATP levels, cell necrosis, and capsase-3/7 activation. Many other kits are commercially available in the market for these and other aspects of necrosis and/or apoptosis. However, the use of ViaLight Plus, ToxiLight, and Caspase-3 Fluorometric Assay resulted in the most useful combination when working with HepG2 cells.


2007 ◽  
Vol 342-343 ◽  
pp. 941-944 ◽  
Author(s):  
S.H. Oh ◽  
M.J. Choi ◽  
B.I. Kim ◽  
Kwang Mahn Kim ◽  
Kyoung Nam Kim

The main objective of this study was to manufacture an oral rinse using the natural antibacterial agent (phytosphingosine, Doosan, Korea) for the prevention of periodontal disease and dental caries. Phytosphingosine is known to inhibit the growth of bacterial strains and induce apoptotic cell death in human cancer lines. In this study, antibacterial activity and cytotoxicity of oral rinses were performed with an experimental group containing phytosphingosine(PS) in vitro. Control groups consist of two Korean products and two American products containing chlorhexidine and cetylpyridinium chloride, respectively. There was no significant difference between experimental and control groups in the antibacterial activity and cytotoxicity except for Chika Chika Liq (p<0.05). According to the results, antibacterial activity of oral rinse containing PS was 99.62%, the strongest contact inhibition of Streptococcus mutans strain among tested groups. In the cytotoxicity test of oral rinses, PS had a weaker cytotoxicity than control groups in mouse and human normal cell lines and showed the strongest cytotoxicity in human oral cancer cell lines (KB cell). From the results, PS may be widely used as an oral rinse for the healthy and the patients with oral cancers in the near future.


2019 ◽  
Vol 74 (7-8) ◽  
pp. 183-191 ◽  
Author(s):  
Vanya Mantareva ◽  
Cem Gol ◽  
Vesselin Kussovski ◽  
Mahmut Durmuş ◽  
Ivan Angelov

Abstract The photodynamic impact of water-soluble zwitterionic zinc phthalocyanines (ZnPc1–4) was studied on pathogenic bacterial strains after specific light exposure (LED 665 nm). The structural differences between the studied ZnPc1–4 are in the positions and the numbers of substitution groups as well as in the bridging atoms (sulfur or oxygen) between substituents and macrocycle. The three peripherally substituted compounds (ZnPc1–3) are tetra-2-(N-propanesulfonic acid)oxypyridine (ZnPc1), tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc2), and octa-substituted 2-(N-propanesulfonic acid)mercaptopyridine (ZnPc3). The nonperipherally substituted compound is tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc4). The uptake and localization capability are studied on Gram (+) Enterococcus faecalis and Gram (−) Pseudomonas aeruginosa as suspensions and as 48 h biofilms. Relatively high accumulations of ZnPc1–4 show bacteria in suspensions with different cell density. The compounds have complete penetration in E. faecalis biofilms but with nonhomogenous distribution in P. aeruginosa biomass. The cytotoxicity test (Balb/c 3T3 Neutral Red Uptake) with ZnPc1–4 suggests the lack of dark toxicity on normal cells. However, only ZnPc3 has a minimal photocytotoxic effect toward Balb/c 3T3 cells and a comparable high potential in the photoinactivation of pathogenic bacterial species.


2020 ◽  
Vol 29 (2) ◽  
pp. 136-42
Author(s):  
Komang Agung Irianto ◽  
Suyenci Limbong

BACKGROUND Commercialized synthetic bone grafts are commonly used to replace the bone defect. Cuttlefish bone is naturally available and widely studied, but the specific cytotoxicity test has not been conducted. This study aimed to evaluate the cytotoxicity of the xenograft compared to commercial grafts.  METHODS We performed an in vitro test evaluating the viability of human mesenchymal stem cells (hMSCs) when cultured for 48 hours with the tested materials (cuttlefish bone graft and fabricated PerOssal®). The trypsinized mitochondrial activity of the viable hMSC was assayed based on colorimetry of the formazan color change. The tested material was considered nontoxic if >70% of the hMSCs were viable. The in vivo cytotoxic effect was evaluated by implanting the graft material in the femoral muscle of New Zealand (NZ) white rabbits. Nine rabbits were used in each test (cuttlefish bone, PerOssal®, and NaCl 0.9%). The systemic acute pyrogenic effect was evaluated based on 72 hours body weight changes and rectal temperature changes every 30 min in the first 3 hours and 72 hours post-implantation.  RESULTS The mean percentage of hMSC viability when cultured with cuttlefish bone graft and PerOssal® was comparable (93.47% and 105.37%, respectively, p = 0.240). The in vivo cytotoxicity on NZ rabbit was similar between all tested materials, as shown by the minor changes in body weight (<10% body weight, p = 0.391) and rectal temperature (<0.5°C, p = 0.127).  CONCLUSIONS Cuttlefish bone xenograft and fabricated PerOssal® have a similar non-cytotoxic effects on hMSCs and non-pyrogenic systemic effects on rabbits.


1989 ◽  
Vol 35 (7) ◽  
pp. 675-680 ◽  
Author(s):  
J. T. Trevors ◽  
J. D. Van Elsas ◽  
M. E. Starodub ◽  
L. S. Van Overbeek

Cell survival and plasmid stability in Pseudomonas fluorescens R2f and Pseudomonas putida CYM 318 containing respectively, plasmid RP4 and pRK2501, and Klebsiella aerogenes NCTC 418 harboring plasmid pBR322 were studied in sterile and nonsterile agricultural drainage water under both aerobic and anaerobic conditions and in the absence and presence of added nutrients. Both Pseudomonas strains survived well in sterile drainage water incubated aerobically, with or without added nutrients. However, Klebsiella aerogenes NCTC 418 (pBR322) only survived in the presence of added nutrients. Pseudomonas fluorescens R2f (RP4) and K. aerogenes NCTC 418 (pBR322) did not survive under anerobic conditions without added nutrients, but showed good survival in the presence of nutrients. Survival of all three strains was negatively affected in nonsterile agricultural drainage water when compared with survival in sterile water. Maintenance of the three plasmids was host, plasmid, and environment dependent. Plasmid pBR322 was not stably maintained in K. aerogenes NCTC 418 under all conditions used in the study, and pRK2501 was readily lost from P. putida CYM 318. Maintenance of RP4 by P. fluorescens R2f was markedly influenced by added nutrients, which caused a loss of the plasmid from cells. The results of the present study demonstrate the influence of nutrients, O2, and native microorganisms on the survival of introduced bacterial strains and plasmid stability in agricultural drainage water.Key words: bacteria, survival, stability, plasmids, water.


2017 ◽  
Vol 16 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Nikola Š Šipošová ◽  
Veronika Liptáková ◽  
Simona Kvasnová ◽  
Petra Kosorínová ◽  
Peter Pristaš

AbstractMultiple metallotolerant bacterial strains were isolated from soil and drainage water samples collected from three industrially heavy metals polluted areas in Slovakia. Obtained bacterial isolates were identified using MALDI-TOF mass spectrometry and bacterial isolates that belonged to the Acinetobacter genus were subjected for the further study. A. calcoaceticus was found to be prevalent species among analyzed Acinetobacter spp. strains, followed by A. lwoffii and A. johnsonii. A. calcoaceticus strains exhibited higher minimum inhibitory concentration to Mn, Zn, and Cu cations compared to A. lwoffii and A. johnsonii. On the other hand minimum inhibitory concentration to Co and Ni were identical in all Acinetobacter spp. isolates. Genetic analyses demonstrated multiple plasmids presence in A. lwoffii and A. johnsonii but not in A. calcoaceticus. Using ERIC-PCR the presence of two different genotypes of A. calcoaceticus was detected in heavy metal polluted environments in Slovakia.


2014 ◽  
Vol 58 (8) ◽  
pp. 4411-4419 ◽  
Author(s):  
Elisabeth M. Haisma ◽  
Anna de Breij ◽  
Heelam Chan ◽  
Jaap T. van Dissel ◽  
Jan W. Drijfhout ◽  
...  

ABSTRACTBurn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistantStaphylococcus aureus(MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains ofS. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0140-0151 ◽  
Author(s):  
Thilaga Rati Selvaraju ◽  
Huzwah Khaza’ai ◽  
Sharmili Vidyadaran ◽  
Mohd Sokhini Abd Mutalib ◽  
Vasudevan Ramachandran ◽  
...  

Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100 - 300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76 % and 79 % in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2 %, 95.0 %, and 95.6 %, respectively (p < 0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.


Sign in / Sign up

Export Citation Format

Share Document