waste sewage sludge
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
U.S.P.R. Arachchige

Bioenergy, which originated from agricultural crop residue and industrial waste, has been studied for sustainable energy generation. As a raw material for briquettes production, agricultural-crop residue, industrial waste, sewage, sludge, or other plants can be used. Briquettes have numerous advantages as they directly help to reduce waste generation and handling. The possibilities of the briquetting, qualities, and other essential factors for briquette production have been discussed. The alternative methods of Briquetting have been addressed with the comparison. The characteristics of the raw materials for briquettes production have been discussed to identify the best agricultural crop residue for briquettes. The properties of binding agents for the briquetting process have been discussed to identify the most practically available binding agent.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-1
Author(s):  
Saikat Banerjee ◽  
◽  
Naveen Prasad ◽  
Sivamani Selvaraju ◽  
◽  
...  

Biogas is an alternative to gaseous biofuels and is produced by the decomposition of biomass from substances such as animal waste, sewage sludge, and industrial effluents. Biogas is composed of methane, carbon dioxide, nitrogen, hydrogen, hydrogen sulfide, and oxygen. The anaerobic production of biogas can be made cheaper by designing a high throughput reactor and operating procedures. The parameters such as substrate type, particle size, temperature, pH, carbon/nitrogen (C/N) ratio, and inoculum concentration play a major role in the design of reactors to produce biogas. Multistage systems, batch, continuous one-stage systems, and continuous two-stage systems are the types of digesters used in the industry for biogas production. A comprehensive review of reactor design for biogas production is presented in the manuscript.


Author(s):  
Ishowriya Yumnam

In this review article the usage of waste sewage sludge and the biomass ash for improving the engineering and non-engineering properties’ of both concrete and soil are discussed in detail. Numerous past research works were studied in detail so as to predict the behavior of biomass ash and waste sewage sludge when used for the stabilization process of soil and concrete. Past studies related to the usage of stabilized sewage sludge and biomass ash were studied in a detailed manner and depending upon the past studies several conclusions has been drawn which are discussed further. Several studies related to the usage of the waste sewage sludge for improving soil physical, chemical and biological properties showed that the usage of waste sewage sludge improve the physical properties, chemical properties, macro-nutriential properties and micro-nutriential properties up to a great extent. Depending upon the results of the past studies it can be concluded that the usage of sewage sludge has positive impact over all the properties of soil and this waste should be utilized in improving the properties of soil rather than dumping. Numerous studies related to the usage of the biomass ash showed that biomass ash has positive impact over both soil as well as concrete. Studies related to the usage of the biomass ash in soil showed that there was a positive response of the stabilized soil after its stabilization with the biomass ash. Studies related to the usage of the biomass ash in concrete showed that the biomass ash can be used up to 10 percent replacement of the ordinary Portland cement so as to attain maximum strength results from it.


2021 ◽  
Vol 321 ◽  
pp. 124497
Author(s):  
Qili Zhu ◽  
Lichun Dai ◽  
Yanwei Wang ◽  
Furong Tan ◽  
Chenghan Chen ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Waldemar KĘPYS ◽  
Katarzyna JASZCZURA

Waste thermal treatment by incineration, co-incineration, gasification or pyrolysis aims at recovering the waste, mainly in the form of energy. In addition, it also serves to disposal of waste, in particular hazardous one, including medical and veterinary waste. Thermal treatment of waste should be carried out in specially adapted installations that meet the BAT requirements. The article discusses installations operating in Poland designed for thermal treatment of municipal solid waste, sewage sludge as well as hazardous waste, including medical and veterinary waste.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nurul Asyifah Mustapha ◽  
Shotaro Toya ◽  
Toshinari Maeda

Author(s):  
K.N. Evsenkin ◽  
A.V. Nefedov ◽  
N.A. Ivannikova

В работе приведены данные вегетационного эксперимента по изучению эффективности применения удобрительного мелиоранта (УМ), полученного в результате совместного ускоренного компостирования животноводческих отходов, осадка сточных вод и соломы, для восстановления плодородия деградированных мелиорированных земель.The paper presents the data of a vegetation experiment to study the effectiveness of fertilizer reclamation (UM), obtained as a result of joint accelerated composting of livestock waste, sewage sludge and straw, to restore the fertility of degraded reclaimed land.


2019 ◽  
Vol 9 (13) ◽  
pp. 2650 ◽  
Author(s):  
Maria Cristina Collivignarelli ◽  
Alessandro Abbà ◽  
Marco Carnevale Miino ◽  
Vincenzo Torretta

Similar to other types of waste, sewage sludge (SS) must be minimized, not only to respect the European Directive 2018/851 on waste, but also because the cost of sludge management is approximately 50% of the total running costs of a wastewater treatment plant (WWTP). Usually, minimization technologies can involve sewage sludge production with three different strategies: (i) adopting a process in the water line that reduces the production of sludge; (ii) reducing the water content (dewatering processes) or (iii) reducing the fraction of volatile solids (stabilization). This review, based on more than 130 papers, aims to provide essential information on the process, such as the advantages, the drawbacks and the results of their application. Moreover, significant information on the technologies still under development is provided. Finally, this review reports a discussion on the impact of the application of the proposed processes in the sludge line on a WWTP with a capacity exceeding 100,000 population equivalent (PE).


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1768 ◽  
Author(s):  
Koetlisi Andreas Koetlisi ◽  
Pardon Muchaonyerwa

The removal of heavy metals from effluents at source could reduce contamination of soil and water bodies. A batch sorption experiment was performed to determine the effects of feedstock of biochars pyrolysed at increasing temperature on sorption capacities of Cu, Cr and Zn from industrial effluent and aqueous solutions. Sewage sludge, latrine faecal waste and pine-bark biochars were used. The sorption data were fitted to the Langmuir isotherm. Maximum sorption capacities of latrine waste, sewage sludge and pine-bark biochar (350 °C) were, respectively, 313, 400 and 233 mg kg−1 for Zn, 102, 98.0 and 33.3 mg kg−1 for Cu, and 18.9, 13.8 and 67.1 mg kg−1 for Cr from industrial effluent. Conversely, sorption capacities from single metal solutions were 278, 227 and 104 mg Zn kg−1, 97.1, 137 and 21.3 mg Cu kg−1, 122, 106 and 147 mg Cr kg−1 on latrine waste, sewage sludge and pine-bark biochar, respectively. Step-wise regression analysis showed that the combined effects of ash, fixed C, pH influenced Zn sorption, ash and fixed C affected Cu sorption, and Cr sorption by ash and specific surface area of the biochar. The findings of the study imply that biochar from human faecal waste, particularly sewage sludge, has the potential to be utilized as sorbents of heavy metals from multiple metal effluent and that the sorption is affected by relative concentrations.


Sign in / Sign up

Export Citation Format

Share Document