Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease

2016 ◽  
Vol 112 ◽  
pp. 2674-2683 ◽  
Author(s):  
Qingshi Tu ◽  
Bryant E. McDonnell
Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2012 ◽  
Vol 33 ◽  
pp. 86-96 ◽  
Author(s):  
Ting Wang ◽  
In-Sung Lee ◽  
Alissa Kendall ◽  
John Harvey ◽  
Eul-Bum Lee ◽  
...  

2016 ◽  
Vol 50 (24) ◽  
pp. 13184-13194 ◽  
Author(s):  
Olga Kavvada ◽  
Arpad Horvath ◽  
Jennifer R. Stokes-Draut ◽  
Thomas P. Hendrickson ◽  
William A. Eisenstein ◽  
...  

2016 ◽  
Vol 847 ◽  
pp. 381-390 ◽  
Author(s):  
Yao Li ◽  
Xian Zheng Gong ◽  
Zhi Hong Wang ◽  
Hao Li ◽  
Miao Miao Fan

In order to determine the optimal parameters of the external insulation system and guide the energy saving and greenhouse gas emission reduction of building, a typical student dormitory building in Beijing was chosen as research object. The life cycle thinking and dynamic simulation method were used in the present investigation. The relationship between the expandable polystyrene (EPS) external insulation system design parameters and building energy consumption and greenhouse gas emission in each phase of materials production phase, operation phase and the whole life cycle was studied, systematically . The results show that the consumption of clay brick, concrete and cement mortar account for 98.1% of the total materials consumption, where concrete contributes most to both energy consumption (36.6%) and greenhouse gas emission (35.9%). Regarding the contribution to energy consumption and greenhouse gas emission for building life cycle, materials production phase accounts for 5.6%-18.8% and building operation phase takes up 80.6%-93.4%. With the increase of EPS insulation thickness, the energy consumption and greenhouse gas emission increase linearly in materials production phase, decrease in building operation phase, and have an optimization value in the building life cycle to reach the minimum when the heat transfer coefficient (K) is 0.3W / (m2 • K) equivalent to the EPS insulation thickness is 130mm. Building heating load reduces with the increases of insulation thickness, but the envelope thermal insulation performance has no significant influence on cooling load.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1048 ◽  
Author(s):  
Sylvia Haus ◽  
Lovisa Björnsson ◽  
Pål Börjesson

A greenhouse gas (GHG) emission reduction obligation system has been implemented in the Swedish road transport sector to promote the use of biofuels. For transportation fuel suppliers to fulfil this obligation, the volume of biofuel required decreases with decreasing life cycle GHG emission for the biofuel, linking lower GHG emission to higher economic value. The aim of this study was to investigate how the economic competitiveness of a Swedish emerging lignocellulosic-based ethanol production system would be influenced by the reduction obligation. The life cycle GHG emission for sawdust-based ethanol was calculated by applying the method advocated in the EU Renewable Energy Directive (RED II). The saving in GHG emissions, compared with fossil liquid transportation fuels, was 93% for a potential commercial production system in southern Sweden. This, in turn, will increase the competitiveness of sawdust-based ethanol compared to the mainly crop-based ethanol currently used in the Swedish biofuel system, which has an average GHG emission saving of 68%, and will allow for an almost 40% higher price of sawdust-based ethanol, compared to the current price of ethanol at point of import. In a future developed, large-scale market of advanced ethanol, today’s GHG emission reduction obligation system in Sweden seems to afford sufficient economic advantage to make lignocellulosic ethanol economically viable. However, in a short-term perspective, emerging lignocellulosic-based ethanol production systems are burdened with economic risks and therefore need additional economic incentives to make a market introduction possible.


Electricity demand in India is increasing at a rapid pace because of growth in Economy, urbanization, infrastructure development and the living standard of people. According to the United Nation’s world population prospects (2017), India’s population is 1.34 billion which will go grow further and surpass China by 2025[1]. According to the IMF, the Indian economy is expected to grow by 7.5% in FY19-20 and 7.7% in FY20-21[2]. Increased population and growth in GDP are associated with increased energy demand. India’s primary energy consumption was 754 Mtoe in 2017 and expected to reach 1928 Mtoe in 2040[3]. Major energy demand is from the Industrial sector which was 51% of total primary energy consumption in 2017 and expected to reach 990 Mtoe, by 2040 [3]. Rising energy demand and dependence on coal-based energy generation capacity, leading to the emission of Green House Gases (GHG). Most of India’s Greenhouse gas emissions are from energy sector having 68.7% contribution in overall greenhouse gas emission. Agriculture, Industrial process land-use change and forestry (LUCF), and waste, contributed 6.0%, 3.8% and 1.9% respectively in overall GHG emission in 2014. [4]. Reducing the GHG emission in India is a major challenge in front of the Government as the Government has to maintain sustainable growth with the contribution in mitigating the effect of climate change. Govt. has pledged to Paris Agreement for the reduction in emission intensity of GDP by 33-35% by 2030 below 2005 level [5]. In the reduction of GHG emission, energy efficiency's contribution is estimated at approx. 51% [6]. The industrial sector can contribute most in reducing GHG emission and contributes to nationally determined contribution. Industry consumes 40%-45% of total energy consumption and motor-driven system consumes 70% [7] of total Industrial energy. Most of the energy in Industries are consumed to run the motor for various purposes and consumes a major chunk of energy which can be reduced to a significant level by replacing the standard motor with energy efficient motor. 90% of the motor in Indian industries are IE1 or below IE1 standard [8] and required replacement. By installing the energy efficient motor, the industry can save huge energy, cost and reduce CO2 emission. Observing the opportunity for energy saving by energy efficient motor, this paper aims to analyze how energy efficient motor is capable of reducing energy consumption, and how it can contribute to energy conservation. Methodology adopted in this paper is secondary research, that answers to questions like; why Industry need energy efficient motor, how energy efficient motor can save energy and increases efficiency, cost-benefit analysis of installing energy efficient motor, barriers to the installation of energy efficient motor and solution to those barriers in migration from the standard motor to energy efficient motor in India.


Sign in / Sign up

Export Citation Format

Share Document