Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant

2018 ◽  
Vol 172 ◽  
pp. 1918-1927 ◽  
Author(s):  
Ruifang Qiu ◽  
Fangqin Cheng ◽  
Haiming Huang
2019 ◽  
Vol 118 ◽  
pp. 02011
Author(s):  
Su Pan ◽  
Yu Pengfeng ◽  
Linbo Liu ◽  
Han Jing ◽  
Xiao Shen

The coal as fired, with unidentified characteristics of the coal gangue, was burned on a 300MW circulating fluidized bed unit. The equipment of the coal conveying system was damaged and the boiler operation was unstable. In response to the problems, the coal quality data and storage conditions of the coal were examined and the site was spot-checked to evaluate the coal quality characteristics. At the same time, the typical representative parameters of the coal handling system and boiler operation were selected. According to the analysis of coal quality and coal storage, the coal quality fluctuates greatly and the uniformity of particle size distribution is poor. There is actually the coal gangue with hard texture and hard to grind in the coal pile. The coal gangue will have adverse effects on the fine screening machine, fine crusher and other equipment. After burned this type of coal, the fluidized quality of the boiler bed is degraded to make an impact on the safe and stable operation of the boiler. It is recommended that the coal should be screened and then burned into the furnace to ensure safe and stable operation of the boiler.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2014 ◽  
Vol 629-630 ◽  
pp. 306-313 ◽  
Author(s):  
Mao Chieh Chi ◽  
Ran Huang ◽  
Te Hsien Wu ◽  
Toun Chun Fou

Circulating fluidized bed combustion (CFBC) fly ash is a promising admixture for construction and building materials due to its pozzolanic activity and self-cementitious property. In this study, CFBC fly ash and coal-fired fly ash were used in Portland cement to investigate the pozzolanic and cementitious characteristics of CFBC fly ash and the properties of cement-based composites. Tests show that CFBC fly ash has the potential instead of cementing materials and as an alternative of pozzolan. In fresh specimens, the initial setting time of mortars increases with the increasing amount of cement replacement by CFBC fly ash and coal-fire fly ash. In harden specimens, adding CFBC fly ash to replace OPC reduces the compressive strength. Meanwhile, CFBC fly ash would results in a higher length change when adding over 30%. Based on the results, the amount of CFBC fly ash replacement cement was recommended to be limited below 20%.


Sign in / Sign up

Export Citation Format

Share Document