Development and sustainability of industrial waste-based red mud hybrid composites

2019 ◽  
Vol 230 ◽  
pp. 862-868 ◽  
Author(s):  
S. Vigneshwaran ◽  
M. Uthayakumar ◽  
V. Arumugaprabu
Author(s):  
Swati Gangwar ◽  
Vimal Kumar Pathak

Industrial wastes such as marble dust, fly ash, and red mud have progressed as an environmental hazard that needs to be disposed or utilized for minimizing the ecological pollution problems and manufacturing costs. Over the years, there is an increasing interest among researchers in utilizing these industrial wastes as reinforcement for developing economic and lightweight monolithic or hybrid composites. In the same context, this paper presents a comprehensive review on the aspects of tribology and thermal performance of industrial waste such as marble dust, fly ash, and red mud as reinforcement for different monolithic and hybrid composites. The review also describes different applications for industrial waste material reinforced composites. Finally, the paper concludes with authors’ perspective of the review, conclusion summary, and future potential of industrial waste filled composites in different industries for obtaining a sustainable and cleaner environment.


Author(s):  
S.P. Chavan ◽  
S.A. Salokhe ◽  
P.A. Nadagauda ◽  
S.T. Patil ◽  
K.M. Mane
Keyword(s):  
Red Mud ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sarath Chandra K ◽  
Krishnaiah S ◽  
Kibebe Sahile

Industrialization is the key to the growth of any country’s economy. However, on the other hand, the production of industrial waste is increasing enormously, which adversely impacts the environment and natural resources. Red mud is also a widespread industrial waste produced during aluminium extraction from bauxite ore in Bayer’s process. Red mud is a highly alkaline material that creates a massive environmental threat in nature. To reduce the impact of this solid waste material, the ideal method is to use it in construction works with appropriate stabilization. This study envisages the strength properties of red mud with fly ash and cement to use it as a road construction material in the subgrade. The influence of fly ash and cement on improving the strength properties of red mud was studied in detail by replacing red mud with 10%, 20%, and 30% with fly ash and 1%, 3%, and 5% of cement to its dry weight. The CBR (California bearing ratio) value was increased from 1.58% to 11.6% by stabilizing red mud with fly ash and cement, which can be used as a road construction material. The UCS (unconfined compressive strength) of red mud was increased from 825 kPa to 2340 kPa upon curing for 28 days with the right mix of fly ash and cement. Along with the strength properties, the chemical analysis of leachate for the best suitable mix was performed according to the TCLP method to understand the hazardous materials present in the red mud when it is injected as ground material. Both strength properties and the leachate characteristics prove that the red mud with suitable fly ash and cement is an excellent material in road constructions.


2021 ◽  
pp. 1-17
Author(s):  
Vigneshwaran Shanmugam ◽  
M. Uthayakumar ◽  
V. Arumugaprabu ◽  
M.S. Abdul Majid ◽  
R. Deepak Joel Johnson

Author(s):  
Anitha Santhoshi Madugula ◽  
B. Murali Krishna ◽  
G. Swaminaidu

Red mud emerges as the major waste material during the production of alumina from bauxite and its potential as a filler material in metal matrices has not yet been reported. In view of this, an attempt is made to explore the possibility of making a class of wear resistant metal matrix hybrid composites with nano-structured red mud and micro sized fly ash particles as reinforcement. The micro-sized red mud particles have been modified to nano-structured red mud using high energy ball milling and after 30 hours of milling, the size was reduced from 100 microns to 30 nm. Composites were fabricated by stir casting and experiments were conducted under laboratory condition to assess the wear characteristics of AA2024- 15 wt% fly ash (micro-sized) and varying fractions (2 wt%, 4 wt% and 6 wt%) red mud (nano-structured) hybrid composites under different working conditions in pure sliding mode on a pin-on-disc machine. Tests were conducted with sliding speeds of 200 rpm, 400 rpm and 600 rpm at loads of 10N, 20N and 30N. The increased frictional thrust at higher load results in increased de-bonding and caused easy removal of material and hence the wear rate is increased with increase in normal load. The wear resistance of the composite is increased with increase in red mud fraction. This is due to the increase in surface energy and inter-atomic bonding with increase in nano-structured red mud fraction. The addition of redmud particles to the matrix phase causes dispersion strengthening and hence the strength as well. Wear resistance is increased with increase in redmud fraction.


2019 ◽  
Vol 17 (4) ◽  
pp. 151-162
Author(s):  
روانبخش شیردم ◽  
امیر شیرکا ◽  
سینا حسن اوغلی ◽  
نعمت اله بخشی

Sign in / Sign up

Export Citation Format

Share Document