A regional supplementary cementitious material for the cement industry: Pistachio shell ash

2020 ◽  
pp. 124810
Author(s):  
İ. Tekin ◽  
İ. Dirikolu ◽  
H.S. Gökçe
2003 ◽  
Vol 30 (2) ◽  
pp. 414-428 ◽  
Author(s):  
Mladenka Saric-Coric ◽  
Pierre-Claude Aïtcin

For each tonne of cement used, the cement industry emits an average of 0.9 t of CO2, which contributes to the greenhouse effect. To satisfy the demands of the concrete industry for cementing materials, new environmental requirements, and the implementation of a sustainable development policy, the use of supplementary cementitious material as a replacement of part of the Portland cement has proven to be an interesting avenue that has not yet been fully explored. Granulated blast-furnace slag has been and is being used as a supplementary cementitious material in replacement of cement in many countries. In Canada, its proportion is usually limited to 20-25% of cement replacement owing to a significant decrease in early age compressive strength as well as a lower scaling resistance. In this study, we have tried to show that by reducing the water:cement ratio we can increase cement replacement by slag up to 50% without harming its short-term compressive strength and scaling resistance. The concretes that were prepared had a workability comparable to that of the reference concrete without slag, sufficient compressive strength to allow demoulding after 24 h, very low chloride ion permeability even at 28 d, as well as very good freeze-thaw and scaling resistance, as long as it is water-cured for a slightly longer period.Key words: high-performance concrete, blast-furnace slag, sustainable development, superplasticizers, workability, durability, silica fume.


2021 ◽  
Vol 6 ◽  
pp. 53-60
Author(s):  
Maciej Zajac ◽  
Jan Skocek ◽  
Jørgen Skibsted ◽  
Mohsen Ben Haha

This contribution discusses the carbon capture and utilization (CCU) approach based on CO2 mineralization of cement paste from recycled concrete as new approach to capture CO2 and significantly contribute to the reduction in CO2 emissions associated with cement production. The current literature suggests that all CO2 released from the decomposition of limestone during clinker production can be sequestered by carbonation of the end-of-life cement paste. This carbonation can be achieved in a few hours at ambient temperature and pressure and with a relatively low CO2 concentration (< 10 %) in the gas. The carbonation of cement paste produces calcite and an amorphous alumina-silica gel, the latter being a pozzolanic material that can be utilized as a supplementary cementitious material. The pozzolanic reaction of the alumina-silica gel is very rapid as a result of its high specific surface and amorphous structure. Thus, composite cements containing carbonated cement paste are characterized by a rapid strength gain. The successful implementation of this CCU approach relies also on improved concrete recycling techniques and methods currently under development to separate out the cement paste fines and such. Full concrete recycling will further improve the circular utilization of cement and concrete by using recycled aggregates instead of natural deposits of aggregates.  Although the feasibility of the process has already been demonstrated at the industrial scale, there are still several open questions related to optimum carbonation conditions and the performance of carbonated material in novel composite cements.


2016 ◽  
Vol 11 (1) ◽  
pp. 186-196
Author(s):  
Jagmeet Singh ◽  
Jaspal Singh ◽  
Manpreet Kaur

Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2), a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS) as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD). The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement


2021 ◽  
Author(s):  
Carlos Hernando Aramburo Varela ◽  
Luiz Felipe de Pinho ◽  
César Pedrajas Nieto-Márquez ◽  
Rafael Talero Morales

The thermal activation of clays to produce highly reactive artificial pozzolans on a large scale is one of the most important technologies developed on an industrial scale to reduce CO2 emissions in cement manufacture. This technical document deals with the scientific basis for the thermal activation of clays to produce an extraordinarily high quality supplementary cementitious material (SCM) based on the contents of its hydraulic factors, reactive silica (SiO2r–) and reactive alumina (Al2O3r–). The production process and the optimization of its use in the new cements offers better performance, features and durability. Furthermore, its mixture with Portland cement is much more appropriate when carried out in a blending station after both components, activated clay and Portland cement, are ground separately and not jointly in a single mill.


2020 ◽  
Vol 62 (1) ◽  
pp. 1-20
Author(s):  
Tobias Danner ◽  
Harald Justnes

AbstractThis study investigates the feasibility of using bauxite residue (BR) as supplementary cementitious material (SCM) for the cement and concrete industry. It is shown from pastes of BR and calcium hydroxide, that BR is highly pozzolanic in nature. The early hydration of cement pastes with BR is accelerated while long-term strength is reduced probably due to the alkaline nature of BR. To be used as cement replacement material in concrete, attempts have been made to reduce the alkali content of BR, in particular to reduce the chance of alkali-aggregate reactions. Co-calcination of BR with kaolin or washing and cooking of BR with calcium hydroxide or calcium hydroxide and gypsum resulted in considerable reduction of alkali content; up to 75%. At the same time the reactivity of the BR was reduced but still being higher compared to fly ash already used in the cement industry.


2020 ◽  
Vol 11 (5) ◽  
pp. 214
Author(s):  
Sajjad Ali Mangi ◽  
Zubair Ahmed Memon ◽  
Shabir Hussain Khahro ◽  
Rizwan Ali Memon ◽  
Arshad Hussain Memon

2022 ◽  
Vol 316 ◽  
pp. 125860
Author(s):  
Chun-Ran Wu ◽  
Zhi-Qiang Hong ◽  
Bao-Jian Zhan ◽  
Wei Tang ◽  
Shi-Cai Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document