Effect of recycled rubber aggregates size on fracture and other mechanical properties of structural concrete

2021 ◽  
pp. 128230
Author(s):  
Sachinthani Karunarathna ◽  
Steven Linforth ◽  
Alireza Kashani ◽  
Xuemei Liu ◽  
Tuan Ngo
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4612
Author(s):  
Dong Viet Phuong Tran ◽  
Abbas Allawi ◽  
Amjad Albayati ◽  
Thi Nguyen Cao ◽  
Ayman El-Zohairy ◽  
...  

This paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher porosity than that of the reference concrete, particularly at the transition zone between the RCA and the new paste. Therefore, the sound transmission in the RC required longer times than that in the reference concrete. Moreover, a predictive equation relating the compressive strength to the UPV was developed.


2019 ◽  
Vol 116 ◽  
pp. 00002 ◽  
Author(s):  
Imad Rezakalla Antypas ◽  
Ghias Kharmanda ◽  
Alexey Dyachenko ◽  
Tatiana Savostina

During the rubber long-term storage in the open air and under the influence of certain temperatures, there is a real threat to the environment where environmental damages cannot be ignored. The objective of this paper is to study the mechanical properties of rubber during its processing by vulcanization after adding some materials to improve their properties. The used materials are: rubber from tires where the proportion of rubber varies from 70-78%, vulcanization granules of rubber, non-vulcanized natural NR rubber, and granulated sulphur. Curves of stress-strain of the recycled rubber are modelled at different diameters of the granules added to the materials for vulcanization removal. As result, the improvement of the mechanical properties are obtained by increasing the diameter of the granules but there a threshold which should not be exceeded.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2014 ◽  
Vol 64 ◽  
pp. 103-113 ◽  
Author(s):  
A.V. Alves ◽  
T.F. Vieira ◽  
J. de Brito ◽  
J.R. Correia

2019 ◽  
Vol 21 ◽  
pp. 28-32
Author(s):  
Zdeněk Prošek ◽  
Pavel Tesárek ◽  
Jan Trejbal

This article discusses the possibility of recycling of concrete waste using the high-speed milling method. The resulting of milling is micronize old concrete. Used old concrete was created by crushing of old concrete, which served as a structural concrete for the construction of a supporting column. Two level of milling process was used to recycle old concrete. The main use of waste is the possibility of partial replacement of commonly used binder and microfillers in concrete. For this reason, properties as particle size distribution, dynamic modulus of elasticity, flexural strength and compressive strength were observed. The aim is to replace as much cement as possible while maintaining mechanical properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunchao Tang ◽  
Wanhui Feng ◽  
Zheng Chen ◽  
Yumei Nong ◽  
Minhui Yao ◽  
...  

The utilization of recycled aggregates made from construction wastes and recycled rubber made from waste tires is an effective method to realize the sustainable development. Thus, this study aims to determine the feasibility of using recycled aggregate concrete containing rubber, named rubberized recycled aggregate concrete (RRAC) as a new type of green-building material. The experimental carbon emissions test verified RRAC as a low-carbon material. In addition, the residual mechanical properties of RRAC were investigated under elevated temperatures. After exposure at 200, 400, and 600 C for 60 min, the stress−strain curve, compressive strength, energy absorption capacity, and spalling resistance of RRAC with recycled aggregate replacement ratios of 50 and 100%, rubber contents of 0, 5, 10, and 15% were explored with microstructural analysis. Moreover, empirical models were proposed to describe the effects of heated temperatures and rubber contents on the stress–strain relationship of RRAC. The results indicated that the rubber particles could reduce the spalling of specimens based on the vapor pressure theory. Therefore, this study provided scientific guidance for the design of structures made with RRAC for resisting high temperatures.


Author(s):  
Paulo Ricardo Alves dos Reis Santos ◽  
Diovana da Silva Santos ◽  
Max Silva de Almada ◽  
Lirana Lamara Barreto da Silva ◽  
Italo Gutierry Carneiro da Conceição ◽  
...  

In this study, the influence of partial introduction as glass as fine aggregate on the composition of simple concrete is analyzed, considering that sand (fine aggregate currently used) has been used on a large scale in civil construction over the years and has been affecting the environment. The main objective of this research was to analyze the mechanical properties of concrete, partially replacing the natural sand with another fine aggregate made from glass residues, evaluating the behavior presented at the end of each test using different percentages of this material as fine aggregate in the concrete composition. From an experimental methodology that consisted of determining an object of study (concrete), selecting the variable that would possibly be able to influence it (glass powder) and defining the ways of controlling and observing the effects that the variable would produce on the object, an interpretation of how the mechanical properties of the glass powder that affect the performance of structural concrete is presented. The granulometry was subsequently analyzed, the tests carried out both in the fresh and hardened state of the concrete, and identified that the glass in a certain percentage proves to be viable. Finally, it can be concluded that the partial inclusion of glass affects the mechanical properties of structural concrete, and can present quite satisfactory results, both related to the environment, since the sand would not be used entirely as fine aggregate or in reaching a resistance suitable for its final use.


Sign in / Sign up

Export Citation Format

Share Document