Local release of NECA (5′-(N-ethylcarboxamido)adenosine) from implantable polymeric sheets for enhanced islet revascularization in extrahepatic transplantation site

2020 ◽  
Vol 321 ◽  
pp. 509-518 ◽  
Author(s):  
Tiep Tien Nguyen ◽  
Fakhrossadat Emami ◽  
Simmyung Yook ◽  
Hanh Thuy Nguyen ◽  
Tung Thanh Pham ◽  
...  
1997 ◽  
Vol 78 (04) ◽  
pp. 1242-1248 ◽  
Author(s):  
David E Newby ◽  
Robert A Wright ◽  
Christopher A Ludlam ◽  
Keith A A Fox ◽  
Nicholas A Boon ◽  
...  

SummaryThe effects on blood flow and plasma fibrinolytic and coagulation parameters of intraarterial substance P, an endothelium dependent vasodilator, and sodium nitroprusside, a control endothelium independent vasodilator, were studied in the human forearm circulation. At subsystemic locally active doses, both substance P (2-8 pmol/min) and sodium nitroprusside (2-8 μg/min) caused dose-dependent vasodilatation (p <0.001 for both) without affecting plasma concentrations of PAI-1, von Willebrand factor antigen or factor VIII:C activity. Substance P caused local increases in t-PA antigen and activity (p <0.001) in the infused arm while sodium nitroprusside did not. At higher doses, substance P increased blood flow and t-PA concentrations in the noninfused arm. We conclude that brief, locally active and subsystemic infusions of intraarterial substance P cause a rapid and substantial local release of t-PA which appear to act via a flow and nitric oxide independent mechanism. This model should provide a useful and selective method of assessing the in vivo capacity of the forearm endothelium to release t-PA acutely.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2073
Author(s):  
Rossella Dorati ◽  
Enrica Chiesa ◽  
Mariella Rosalia ◽  
Silvia Pisani ◽  
Ida Genta ◽  
...  

This work aimed at formulating tubular grafts electrospun with a size < 6 mm and incorporating vancomycin as an antimicrobial agent. Compared to other papers, the present study succeeded in using medical healthcare-grade polymers and solvents permitted by ICH Topic Q3C (R4). Vancomycin (VMC) was incorporated into polyester synthetic polymers (poly-L-lactide-co-poly-ε-caprolactone and poly lactide-co-glycolide) using permitted solvents; moreover, a surfactant was added to the formulation in order to avoid the precipitation of VMC on fiber surface. A preliminary preformulation study was carried out to evaluate solubility of VMC in different aqueous and organic solvents and its stability. To reduce size of fibers and their orientation, we studied a solvent system based on methylene chloride and acetone (DCM/acetone), at different ratios (80:20, 70:30, and 60:40). Considering conductivity of solutions and their spinnability, solvent system at a 80:20 ratio was selected for the study. SEM images demonstrated that size of fibers, their distribution, and their orientation were affected by the incorporation of VMC and surfactant into polymer solution. Surfactant allowed for the reduction of precipitates of VMC on fiber surface, which are responsible of the high burst release in the first six hours; the release was mainly dependent on graft structure porosity, number of pores, and graft absorbent capability. A controlled release of VMC was achieved, covering a period from 96 to 168 h as a function of composition and structure; the concentration of VMC was significantly beyond VMC minimum inhibitory concentration (MIC, 2 ug/mL). These results indicated that the VMC tubular electrospun grafts not only controlled the local release of VMC, but also avoided onset of antibiotic resistance.


2010 ◽  
Vol 2010 (4) ◽  
pp. pdb.prot5416-pdb.prot5416 ◽  
Author(s):  
R. A. Poche ◽  
J. E. Saik ◽  
J. L. West ◽  
M. E. Dickinson

2014 ◽  
Vol 23 (11) ◽  
pp. 1451-1464 ◽  
Author(s):  
Hiroki Iwai ◽  
Satoshi Nori ◽  
Soraya Nishimura ◽  
Akimasa Yasuda ◽  
Morito Takano ◽  
...  

Transplantation of neural stem/progenitor cells (NS/PCs) promotes functional recovery after spinal cord injury (SCI); however, few studies have examined the optimal site of NS/PC transplantation in the spinal cord. The purpose of this study was to determine the optimal transplantation site of NS/PCs for the treatment of SCI. Wild-type mice were generated with contusive SCI at the T10 level, and NS/PCs were derived from fetal transgenic mice. These NS/PCs ubiquitously expressed ffLuc-cp156 protein (Venus and luciferase fusion protein) and so could be detected by in vivo bioluminescence imaging 9 days postinjury. NS/PCs (low: 250,000 cells per mouse; high: 1 million cells per mouse) were grafted into the spinal cord at the lesion epicenter (E) or at rostral and caudal (RC) sites. Phosphate-buffered saline was injected into E as a control. Motor functional recovery was better in each of the transplantation groups (E-Low, E-High, RC-Low, and RC-High) than in the control group. The photon counts of the grafted NS/PCs were similar in each of the four transplantation groups, suggesting that the survival of NS/PCs was fairly uniform when more than a certain threshold number of cells were transplanted. Quantitative RT-PCR analyses demonstrated that brain-derived neurotropic factor expression was higher in the RC segment than in the E segment, and this may underlie why NS/PCs more readily differentiated into neurons than into astrocytes in the RC group. The location of the transplantation site did not affect the area of spared fibers, angiogenesis, or the expression of any other mediators. These findings indicated that the microenvironments of the E and RC sites are able to support NS/PCs transplanted during the subacute phase of SCI similarly. Optimally, a certain threshold number of NS/PCs should be grafted into the E segment to avoid damaging sites adjacent to the lesion during the injection procedure.


1989 ◽  
Vol 71 (Supplement) ◽  
pp. A209
Author(s):  
J. Joris ◽  
P. Damas ◽  
Ph. Gysen ◽  
P. Franchimont ◽  
M. Lamy

1990 ◽  
Vol 78 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Giovanni Anfossi ◽  
Elena Mularoni ◽  
Mariella Trovati ◽  
Paola Massucco ◽  
Luigi Mattiello ◽  
...  

1. The release of arginine vasopressin from human platelets was investigated in platelet-rich plasma after irreversible aggregation induced by adenosine 5′-pyrophosphate, collagen, sodium arachidonate, thrombin and adrenaline in vitro. 2. Arginine vasopressin levels were significantly higher in the supernatant from stimulated platelet-rich plasma than from unstimulated samples, reaching 3.5 × 10−12 (range 1.6–12.5 × 10−12) mol/l in the absence of an aggregating agent, 8.8 × 10−12 (range 4.2–17.5 × 10−12) mol/l after adenosine 5′-pyrophosphate, 13.7 × 10−12 (2.2–63.2 × 10−12) mol/l after collagen, 7.8 × 10−12 (2.2–14.6 × 10−12) mol/l after sodium arachidonate, 7.8 × 10−12 (2.2–16.3 × 10−12) mol/l after thrombin and 12.2 × 10−12 (4.8–32.1 × 10−12) mol/l after adrenaline. 3. An arginine vasopressin level of 18 × 10−12 mol/l, which can be achieved physiologically, increased the sensitivity of platelets to adenosine 5′-pyrophosphate and collagen in vitro; the same concentration of arginine vasopressin caused a potentiation of the effect of catecholamines on the response of platelets to sodium arachidonate. 4. These results indicate that intraplatelet arginine vasopressin is released during aggregation and suggest that a local release of arginine vasopressin could occur after complete platelet aggregation in vivo.


Sign in / Sign up

Export Citation Format

Share Document