Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy

Author(s):  
Cong Li ◽  
Qiujun Qiu ◽  
Xin Gao ◽  
Xinyang Yan ◽  
Chuizhong Fan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5912
Author(s):  
Angèle Luby ◽  
Marie-Clotilde Alves-Guerra

Over the past decade, advances in cancer immunotherapy through PD1–PDL1 and CTLA4 immune checkpoint blockade have revolutionized the management of cancer treatment. However, these treatments are inefficient for many cancers, and unfortunately, few patients respond to these treatments. Indeed, altered metabolic pathways in the tumor play a pivotal role in tumor growth and immune response. Thus, the immunosuppressive tumor microenvironment (TME) reprograms the behavior of immune cells by altering their cellular machinery and nutrient availability to limit antitumor functions. Today, thanks to a better understanding of cancer metabolism, immunometabolism and immune checkpoint evasion, the development of new therapeutic approaches targeting the energy metabolism of cancer or immune cells greatly improve the efficacy of immunotherapy in different cancer models. Herein, we highlight the changes in metabolic pathways that regulate the differentiation of pro- and antitumor immune cells and how TME-induced metabolic stress impedes their antitumor activity. Finally, we propose some drug strategies to target these pathways in the context of cancer immunotherapy.


2020 ◽  
Vol 220 ◽  
pp. 88-96 ◽  
Author(s):  
Yaqi Li ◽  
Jing Liu ◽  
Long Gao ◽  
Yuan Liu ◽  
Fang Meng ◽  
...  

2019 ◽  
Vol 11 (501) ◽  
pp. eaav7816 ◽  
Author(s):  
Rachael M. Zemek ◽  
Emma De Jong ◽  
Wee Loong Chin ◽  
Iona S. Schuster ◽  
Vanessa S. Fear ◽  
...  

Cancer immunotherapy using antibodies that target immune checkpoints has delivered outstanding results. However, responses only occur in a subset of patients, and it is not fully understood what biological processes determine an effective outcome. This lack of understanding hinders the development of rational combination treatments. We set out to define the pretreatment microenvironment associated with an effective outcome by using the fact that inbred mouse strains bearing monoclonal cancer cell line–derived tumors respond in a dichotomous manner to immune checkpoint blockade (ICB). We compared the cellular composition and gene expression profiles of responsive and nonresponsive tumors from mice before ICB and validated the findings in cohorts of patients with cancer treated with ICB antibodies. We found that responsive tumors were characterized by an inflammatory gene expression signature consistent with up-regulation of signal transducer and activator of transcription 1 (STAT1) and Toll-like receptor 3 (TLR3) signaling and down-regulation of interleukin-10 (IL-10) signaling. In addition, responsive tumors had more infiltrating-activated natural killer (NK) cells, which were necessary for response. Pretreatment of mice with large established tumors using the STAT1-activating cytokine interferon-γ (IFNγ), the TLR3 ligand poly(I:C), and an anti–IL-10 antibody sensitized tumors to ICB by attracting IFNγ-producing NK cells into the tumor, resulting in increased cure rates. Our results identify a pretreatment tumor microenvironment that predicts response to ICB, which can be therapeutically attained. These data suggest a biomarker-driven approach to patient management to establish whether a patient would benefit from treatment with sensitizing therapeutics before ICB.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20512-e20512
Author(s):  
Paul R. Walker ◽  
Nitika Sharma ◽  
Chipman Robert Geoffrey Stroud ◽  
Mahvish Muzaffar ◽  
Cynthia R. Cherry ◽  
...  

e20512 Background: Veristrat (Biodesix, Boulder, CO) is a blood based proteomic assay that is dominated by inflammatory proteins and is prognostic and predictive in metastatic NSCLC after treatment with platinum based chemotherapy (Gregorc et al, Lancet 2014). Smoldering inflammation in the tumor microenvironment regulates and escalates cancer invasion, angiogenesis and immune surveillance escape (Balkwill and Mantovani, Lancet 2001). There is preclinical evidence to suggest that the tumor microenvironment can be altered with immunomodulatory interventions (Martino et al, 2016). While immune checkpoint blockade has shown durable benefit in metastatic NSCLC, the response rates still hover around 20%. As a result, identification of predictive biomarkers are of critical importance. The predictive value of the Veristrat assay with respect to ICB is poorly defined. Methods: At our institution, 83 pts with metastatic lung cancer pts were treated with nivolumab between 6/2015 to 12/2016. The following clinicopathologic characteristics were abstracted from medical records: tumor histology, Veristrat status, no. of doses of nivolumab, irAEs and overall survival. Results: Of the 83 pts, 65 pts were found to have NSCLC. Veristrat status was available for 17/65 of these pts. Nine pts were identified to have “Veristrat good” and seven pts were “Veristrat poor”. Median number of nivolumab doses was 4. Median survival for all patients was 30 weeks. Median survival was 20 weeks for “Veristrat poor” and 26 weeks for “Veristrat good”(p = 0.68). Grade 3-4 irAEs were noted in 5/9 patients with “Veristrat good” and 5/7 patients with “Veristrat poor”. Conclusions: “Veristrat poor” pts treated with ICB have a lower median survival as compared to “Veristrat good” pts. Our study did not meet statistically significant end point due to limited sample size. Further studies are needed to identify poorly immunogenic tumors and develop novel treatment approaches to optimize outcomes. [Table: see text]


HPB ◽  
2020 ◽  
Vol 22 ◽  
pp. S3
Author(s):  
L. Diggs ◽  
B. Heinrich ◽  
L. Cui ◽  
C. Ma ◽  
Q. Zang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document