Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption

2016 ◽  
Vol 16 ◽  
pp. 17-22 ◽  
Author(s):  
Jerzy Choma ◽  
Lukasz Osuchowski ◽  
Michal Marszewski ◽  
Aleksandra Dziura ◽  
Mietek Jaroniec
2015 ◽  
Vol 281 ◽  
pp. 704-712 ◽  
Author(s):  
Noel Díez ◽  
Patricia Álvarez ◽  
Marcos Granda ◽  
Clara Blanco ◽  
Ricardo Santamaría ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 1977 ◽  
Author(s):  
Yu-Chun Chiang ◽  
Cheng-Yu Yeh ◽  
Chih-Hsien Weng

Polyacrylonitrile-based activated carbon fibers (ACFs), modified using potassium hydroxide (KOH) or tetraethylenepentamine (TEPA), were investigated for carbon dioxide (CO2) adsorption, which is one of the promising alleviation approaches for global warming. The CO2 adsorption isotherms were measured, and the values of isosteric heat of adsorption were calculated. The results showed that the KOH-modified ACFs exhibited a great deal of pore volume, and a specific surface area of 1565 m2/g was obtained. KOH activation made nitrogen atoms easily able to escape from the surface of ACFs. On the other hand, the surface area and pore volume of ACFs modified with TEPA were significantly reduced, which can be attributed to the closing or blocking of micropores by the N-groups. The CO2 adsorption on the ACF samples was via exothermic reactions and was a type of physical adsorption, where the CO2 adsorption occurred on heterogeneous surfaces. The CO2 uptakes at 1 atm and 25 °C on KOH-activated ACFs reached 2.74 mmole/g. This study observed that microporosity and surface oxygen functionalities were highly associated with the CO2 uptake, implying the existence of O-C coordination, accompanied with physical adsorption. Well cyclability of the adsorbents for CO2 adsorption was observed, with a performance decay of less than 5% over up to ten adsorption-desorption cycles.


2015 ◽  
Vol 353 ◽  
pp. 158-164 ◽  
Author(s):  
Byong Chol Bai ◽  
Eun Ae Kim ◽  
Chul Wee Lee ◽  
Young-Seak Lee ◽  
Ji Sun Im

Materials ◽  
2017 ◽  
Vol 10 (5) ◽  
pp. 511 ◽  
Author(s):  
Yu-Chun Chiang ◽  
Wei-Lien Hsu ◽  
Shih-Yu Lin ◽  
Ruey-Shin Juang

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3275
Author(s):  
Yu-Chun Chiang ◽  
Wei-Ting Chin ◽  
Chih-Cheng Huang

Coaxial electrospinning has been considered a straightforward and convenient method for producing hollow nanofibers. Therefore, the objective of this study was to develop hollow activated carbon nanofibers (HACNFs) for CO2 capture in order to reduce emissions of CO2 to the atmosphere and mitigate global warming. Results showed that the sacrificing core could be decomposed at carbonization temperatures above 900 °C, allowing the formation of hollow nanofibers. The average outer diameters of HACNFs ranged from 550 to 750 nm, with a shell thickness of 75 nm. During the carbonization stage, the denitrogenation reactions were significant, while in the CO2 activation process, the release of carbon oxides became prominent. Therefore, the CO2 activation could increase the percentages of N=C and quaternary N groups. The major nitrogen functionalities on most samples were O=C–NH and quaternary N. However, =C and quaternary N groups were found to be crucial in determining the CO2 adsorption performance. CO2 adsorption on HACNFs occurred due to physical adsorption and was an exothermic reaction. The optimal CO2 adsorption performance was observed for HACNFs carbonized at 900 °C, where 3.03 mmol/g (1 atm) and 0.99 mmol/g (0.15 atm) were measured at 25 °C. The degradation of CO2 uptakes after 10 adsorption−desorption cyclic runs could be maintained within 8.9%.


Sign in / Sign up

Export Citation Format

Share Document