Structural performance of cold-formed high strength stainless steel columns

2005 ◽  
Vol 61 (12) ◽  
pp. 1631-1649 ◽  
Author(s):  
Ehab Ellobody ◽  
Ben Young
2021 ◽  
Vol 64 (4) ◽  
pp. 235-250
Author(s):  
Jelena Dobrić ◽  
Nina Gluhović ◽  
Zlatko Marković ◽  
Dragan Buđevac

This paper aims to develop design recommendations for closely spaced built-up stainless steel columns, based on findings gained in performed research at the University of Belgrade. The research focuses on pin-ended built-up columns formed from two press-braked channel chords oriented back-to-back and addresses their flexural buckling capacity about the minor axis. The impact of overall and local chord slenderness, interconnection stiffness, geometric imperfections and material nonlinearity is evaluated. In order to fully exploit their structural performance, two separate approaches for the design of built-up columns with welded or bolted interconnections are defined that include different formulas for shear stiffness.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1981 ◽  
Vol 30 (12) ◽  

Abstract METGLAS MBF-30A is a brazing foil in ductile, flexible metallic-glass form (a similar grade, MBF-30, is identical except that it has larger dimensional tolerances). This foil provides an alloy with high strength at both elevated and room temperatures. It can be used to join highly stressed stainless steel and heat-resisting alloy components. The excellent flow characteristics of this alloy recommend it for assemblies with good fit-up and tight-tolerance joints. It works well on thin-foil, honeycomb designs and on fairly heavy components. This datasheet provides information on composition, physical properties, and microstructure. It also includes information on heat treating. Filing Code: Ni-273. Producer or source: Allied Corporation.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract Armco 21-6-9 is an austenitic stainless steel alloy designed for use in applications where a combination of high strength and corrosion resistance is desired. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-125. Producer or source: Armco Inc., Eastern Steel Division.


Alloy Digest ◽  
1961 ◽  
Vol 10 (4) ◽  

Abstract Jethete M.151 is a high strength, transformable stainless steel, suitable for welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, and joining. Filing Code: SS-116. Producer or source: Luria Steel & Trading Corporation (Agent).


Alloy Digest ◽  
2002 ◽  
Vol 51 (11) ◽  

Abstract Allvac 13-8 has good fabricability and can be age hardened by a single treatment in the range 510-620 deg C (950-1150 deg F). Cold working prior to aging enhances the aging. This martensitic precipitation-hardening stainless steel has very good resistance to general corrosion and stress-corrosion cracking. It develops very high strength and exhibits good transverse ductility and toughness in heavy sections. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-866. Producer or source: Allvac Metals Company.


Sign in / Sign up

Export Citation Format

Share Document