Seismic design rules for lightweight steel shear walls with steel sheet sheathing in the 2nd-generation Eurocodes

2021 ◽  
Vol 187 ◽  
pp. 106951
Author(s):  
Luigi Fiorino ◽  
Alessia Campiche ◽  
Sarmad Shakeel ◽  
Raffaele Landolfo
Author(s):  
C. A. Rogers ◽  
N. Balh ◽  
C. Ong-Tone ◽  
I. Shamim ◽  
J. DaBreo

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


Author(s):  
Yoshimichi Kawai ◽  
Shigeaki Tohnai ◽  
Shinichiro Hashimoto ◽  
Atsushi Sato ◽  
Tetsuro Ono

<p>Steel sheet shear walls with cold formed edge stiffened burring holes are applied to low- to mid-rise housings in seismically active and typhoon- or hurricane-prone regions. A configuration with burrs on the inside and smooth on the outside enables the construction of omitting the machining of holes for equipments and thinner walls with simplified attachments of finishings. In-plane shear experiments and finite element analyses revealed that the walls allowed shear stress to concentrate in intervals between the burring holes. The walls maintained stable shear load and large deformation behavior, and the deformation areas were limited in the intervals and a large out-of-plane waveform in a sheet was effectively prevented owing to edge stiffened burring ribs. The design methods are developed for evaluating the shear load of the walls at story angle from zero to 1/100, using the idea of decreasing the band width of the inclined tension fields on the intervals with the effects of the thickness.</p>


2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


Prostor ◽  
2021 ◽  
Vol 29 (1 (61)) ◽  
pp. 42-55
Author(s):  
Cengiz Özmen

Seismic codes include strict requirements for the design and construction of mid-rise reinforced concrete residential buildings. These requirements call for the symmetric and regular arrangement of the structural system, increased cross-sections for columns, and the introduction of shear walls to counteract the effects of lateral seismic loads. It is challenging for architects to reconcile the demands of these codes with the spatial arrangement and commercial appeal of their designs. This study argues that such reconciliation is possible through an architectural analysis. First, the effectiveness of applying the seismic design principles required by the codes is demonstrated with the comparative analysis of two finite element models. Then three pairs of architectural models, representing the most common floor plan arrangements for such buildings in Turkey, are architecturally analyzed before and after the application of seismic design principles in terms of floor area and access to view. The results demonstrate that within the context defined by the methodology of this study, considerable seismic achievement can be achieved in mid-rise reinforced concrete residential buildings by the application of relatively few, basic design features by the architects.


2012 ◽  
Vol 138 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Patricia M. Clayton ◽  
Jeffrey W. Berman ◽  
Laura N. Lowes

2016 ◽  
Vol 21 (3) ◽  
pp. 479-500 ◽  
Author(s):  
David Cassiano ◽  
Mario D'Aniello ◽  
Carlos Rebelo ◽  
Raffaele Landolfo ◽  
Luis S. da Silva

Sign in / Sign up

Export Citation Format

Share Document