Cyclic behaviour of a novel torsional steel-tube damper

2022 ◽  
Vol 188 ◽  
pp. 107010
Author(s):  
Wenchen Lie ◽  
Congxiao Wu ◽  
Weili Luo ◽  
Changgen Wu ◽  
Changhong Li ◽  
...  
Keyword(s):  
2022 ◽  
Vol 190 ◽  
pp. 107089
Author(s):  
Qihan Shen ◽  
Fengqin Wang ◽  
Jingfeng Wang ◽  
Xianfeng Ma

Author(s):  
Yadong Jiang ◽  
António Silva ◽  
Luís Macedo ◽  
José Miguel Castro ◽  
Ricardo Monteiro ◽  
...  

The research reported herein aims to propose an accurate and efficient simplified numerical modelling approach for circular Concrete-Filled Steel Tubes (CFST) under flexural loading. Experimental tests were carried out to characterize the monotonic and cyclic behaviour of CFST members under bending. To assess the seismic performance of a composite structure with CFST members, both Distributed Plasticity (DP) and Concentrated Plasticity (CP) models were considered as potential simplified models for CFST members. The DP model was developed on the basis of a fibre discretization of the composite cross-section and displacement-based beam-column finite element. It was concluded that one could not accurately capture the development of local buckling of the steel tube and the development of multi-axial stress state effects (e.g. concrete confinement). Thus the DP model was found to be unsuitable for modelling of CFST members under cyclic flexural loading. Regarding the CP modelling, the modified Ibarra-Medina-Krawinkler deterioration model (with peak-oriented hysteretic response) was selected to define the behaviour of the plasticity spring associated with the plastic hinging region of the member. In order to accurately simulate the cyclic behaviour of the CFST section within the response of the spring, the deterioration model was calibrated, within a parameter-optimization framework, on the basis of 3D comprehensive numerical models in ABAQUS. The CP model was found to capture well the deterioration in both strength and stiffness of the hysteretic loops of the CFST members, which may be mostly associated with the development of local buckling phenomena. Furthermore, the elastic stiffness, the ultimate strength and the pinching effects of the hysteretic loops were also well simulated. Thus, the proposed CP model, coupled with the advanced calibration framework, was concluded to have a high level of accuracy in terms of simulating the cyclic flexural response of CFST members.


2019 ◽  
Vol 23 (1) ◽  
pp. 174-189
Author(s):  
Fei-Yu Liao ◽  
Wei-Jie Zhang ◽  
Hao Han

It is common that initial gaps exist between the steel tube and the core concrete in concrete-filled steel tubular structural members, which might affect the performance of the structure. This article aims to study the effects of the gaps on the cyclic behaviour of circular concrete-filled steel tubular members. A total of 24 concrete-filled steel tubular specimens were tested under constant axial load and cyclically lateral loads, where the main testing parameters included the types of gap, the gap ratio, the axial load level and the steel ratio. The failure mode, lateral load versus lateral displacement hysteretic curve and load versus displacement envelope curve of concrete-filled steel tubular specimens with pre-designed gaps were experimentally investigated and compared with those of the reference ones without any gap. The effects of gaps on the ultimate strength, ductility and dissipated energy of the concrete-filled steel tubular members were quantitatively evaluated according to the test results. The influence of gaps on circular concrete-filled steel tubes under different loading conditions, such as axial compressive loading, pure bending, eccentrically compressive loading and cyclic lateral loading, was also compared and discussed.


1989 ◽  
Vol 3 (4) ◽  
pp. 235
Author(s):  
W.R. Duguid ◽  
P.A. Funnell
Keyword(s):  

2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


Sign in / Sign up

Export Citation Format

Share Document