scholarly journals SIMPLIFIED MODELLING OF CIRCULAR CFST MEMBERS WITH A CONCENTRATED PLASTICITY APPROACH

Author(s):  
Yadong Jiang ◽  
António Silva ◽  
Luís Macedo ◽  
José Miguel Castro ◽  
Ricardo Monteiro ◽  
...  

The research reported herein aims to propose an accurate and efficient simplified numerical modelling approach for circular Concrete-Filled Steel Tubes (CFST) under flexural loading. Experimental tests were carried out to characterize the monotonic and cyclic behaviour of CFST members under bending. To assess the seismic performance of a composite structure with CFST members, both Distributed Plasticity (DP) and Concentrated Plasticity (CP) models were considered as potential simplified models for CFST members. The DP model was developed on the basis of a fibre discretization of the composite cross-section and displacement-based beam-column finite element. It was concluded that one could not accurately capture the development of local buckling of the steel tube and the development of multi-axial stress state effects (e.g. concrete confinement). Thus the DP model was found to be unsuitable for modelling of CFST members under cyclic flexural loading. Regarding the CP modelling, the modified Ibarra-Medina-Krawinkler deterioration model (with peak-oriented hysteretic response) was selected to define the behaviour of the plasticity spring associated with the plastic hinging region of the member. In order to accurately simulate the cyclic behaviour of the CFST section within the response of the spring, the deterioration model was calibrated, within a parameter-optimization framework, on the basis of 3D comprehensive numerical models in ABAQUS. The CP model was found to capture well the deterioration in both strength and stiffness of the hysteretic loops of the CFST members, which may be mostly associated with the development of local buckling phenomena. Furthermore, the elastic stiffness, the ultimate strength and the pinching effects of the hysteretic loops were also well simulated. Thus, the proposed CP model, coupled with the advanced calibration framework, was concluded to have a high level of accuracy in terms of simulating the cyclic flexural response of CFST members.

2013 ◽  
Vol 19 (2) ◽  
pp. 184-195 ◽  
Author(s):  
M. C. Sundarraja ◽  
G. Ganesh Prabhu

This research is aimed at investigating the structural improvements of concrete filled steel tubular (CFST) sections with normal strength concrete externally bonded with fibre reinforced polymer (FRP) composites. For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre reinforced polymer (CFRP) fabrics was used as horizontal strips (lateral ties) with several other parameters such as the number of layers and spacing of strips. Among twenty one columns, eighteen were externally bonded by CFRP strips having a constant width of 50 mm with a spacing of 20 mm and 40 mm and the remaining three columns were unbounded. Experiments were undertaken until column failure to fully understand the influence of FRP characteristics on the compressive behaviour of square CFST sections including their failure modes, axial stress-strain behaviour, and enhancement in load carrying capapcity. It was found that the external bonding of CFRP strips provides external confinement pressure effectively and intended to delay the local buckling of steel tube and also to improve the load carrying capacity further.


2016 ◽  
Vol 16 (03) ◽  
pp. 1650023 ◽  
Author(s):  
PIERO GIOVANNI PAVAN ◽  
PAOLA PACHERA ◽  
SILVIA TODROS ◽  
CESARE TIENGO ◽  
ARTURO NICOLA NATALI

Bioprostheses obtained from animal models are often adopted in abdominal surgery for repair and reconstruction. The functionality of these prosthetic implants is related also to their mechanical characteristics that are analyzed here. This work illustrates a constitutive model to describe the short-term mechanical response of Permacol[Formula: see text] bioprostheses. Experimental tests were developed on tissue samples to highlight mechanical non-linear characteristics and viscoelastic phenomena. Uni-axial tensile tests were developed to evaluate the strength and strain stiffening. Incremental uni-axial stress relaxation tests were carried out at nominal strain ranging from 10% to 20% and to monitor the stress relaxation process up to 400[Formula: see text]s. The constitutive model effectively describes the mechanical behavior found in experimental testing. The mechanical response appears to be independent on the loading direction, showing that the tissue can be considered as isotropic. The viscoelastic response of the tissue shows a strong decay of the stress in the first seconds of the relaxation process. The investigation performed is aimed at a general characterization of the biomechanical response and addresses the development of numerical models to evaluate the biomechanical performance of the graft with surrounding host tissues.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1404
Author(s):  
Jian Wang ◽  
Junwu Xia ◽  
Hongfei Chang ◽  
Youmin Han ◽  
Linli Yu ◽  
...  

In the present paper, the monotonic axial compression test of gangue aggregate concrete filled Fiber reinforced polymer (FRP) and thin-walled steel double tubular columns (DTCC) was carried out, and the gangue aggregate concrete filled FRP tubular columns (CFFT) were designed as a comparison. The main experimental factors were the confinement level of the FRP jacket, the relative diameter ratio (the ratio of the outer diameter of the steel tube to the inner diameter of the FRP jacket), and the different strengths of gangue aggregate concrete. The test results show that the bearing capacity and ductility of gangue aggregate concrete in CFFT were significantly improved. As the local buckling of thin-walled steel tube was effectively inhibited, the load bearing capacity of DTCC was further improved compared with CFFT, but the change of dilation behavior and ductility was insignificant. By analyzing the bi-directional stress state of the steel tube, the confinement level of the external FRP jacket was the most sensitive factor affecting the hoop stress of the steel tube, and the axial stress was obviously weakened under the bi-directional stress state. In addition, with the increase of steel tube diameter, the confinement effect of steel tube in DTCC became more obvious.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christoph Lenting ◽  
Thorsten Geisler

AbstractFluid-cell Raman spectroscopy is a space and time-resolving application allowing in operando studies of dynamic processes during solution–solid interactions. A currently heavily debated example is the corrosion mechanism of borosilicate glasses, which are the favoured material for the immobilization of high-level nuclear waste. With an upgraded fluid-cell lid design made entirely from the glass sample itself, we present the polymerization of the surface alteration layer over time in an initially acidic environment, including the differentiation between pore and surface-adsorbed water within it. Our results support an interface-coupled dissolution-precipitation model, which opposes traditional ion-exchange models for the corrosion mechanism. A sound description of the corrosion mechanism is essential for reliable numerical models to predict the corrosion rate of nuclear waste glasses during long-term storage in a geological repository.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Artur Andrearczyk ◽  
Bartlomiej Konieczny ◽  
Jerzy Sokołowski

This paper describes a novel method for the experimental validation of numerically optimised turbomachinery components. In the field of additive manufacturing, numerical models still need to be improved, especially with the experimental data. The paper presents the operational characteristics of a compressor wheel, measured during experimental research. The validation process included conducting a computational flow analysis and experimental tests of two compressor wheels: The aluminium wheel and the 3D printed wheel (made of a polymer material). The chosen manufacturing technology and the results obtained made it possible to determine the speed range in which the operation of the tested machine is stable. In addition, dynamic destructive tests were performed on the polymer disc and their results were compared with the results of the strength analysis. The tests were carried out at high rotational speeds (up to 120,000 rpm). The results of the research described above have proven the utility of this technology in the research and development of high-speed turbomachines operating at speeds up to 90,000 rpm. The research results obtained show that the technology used is suitable for multi-variant optimization of the tested machine part. This work has also contributed to the further development of numerical models.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


2021 ◽  
Vol 186 ◽  
pp. 106909
Author(s):  
Zannatul Mawa Dalia ◽  
Anjan K. Bhowmick ◽  
Gilbert Y. Grondin

2013 ◽  
Vol 671-674 ◽  
pp. 833-837
Author(s):  
Yang Wen ◽  
Fei Zhou

In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1 , JD3 is the second and JD2 is minimum.


2017 ◽  
Vol 10 (2) ◽  
pp. 477-508 ◽  
Author(s):  
C. F.R. SANTOS ◽  
R. C. S. S. ALVARENGA ◽  
J. C. L. RIBEIRO ◽  
L. O CASTRO ◽  
R. M. SILVA ◽  
...  

Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar) was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.


2022 ◽  
Vol 190 ◽  
pp. 107089
Author(s):  
Qihan Shen ◽  
Fengqin Wang ◽  
Jingfeng Wang ◽  
Xianfeng Ma

Sign in / Sign up

Export Citation Format

Share Document