Physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol at different temperatures

2013 ◽  
Vol 58 ◽  
pp. 367-376 ◽  
Author(s):  
Mohammad S. AlTuwaim ◽  
Khaled H.A.E. Alkhaldi ◽  
Adel S. Al-Jimaz ◽  
Abubaker A. Mohammad
Author(s):  
L. A. Serafimov ◽  
K. A. Morozov

In this article, the normal continuous mode of distillation is considered using an example of binary two-phase mixture distillation. In practice, there are often deviations from the normal mode. It has been proved that the deviation leads to an increase in energy consumption for the ongoing process. In the industry, columns separating binary mixtures are normally the finishing apparatuses in the flow-sheet separation of multicomponent mixtures, which are obtained in the reactor as a result of main reactions as well as by-reactions. The distillation of binary mixtures is relatively simpler than that of multicomponent mixtures. In this regard, the fundamental parts of monographs especially in the thirties-forties of the last century started with the study of binary mixtures, although multicomponent mixtures were the main focus. The aim of analyzing this complex and the highly energy-intensive process is to facilitate the choice of a mathematical model for the process and the determination on its basis variance. Variance is a set of independent variables that allow calculation of a process only after taking into account the number of independent equations related to these variables. A case of deviation from the normal distillation regime where an under-heated liquid enters the column feed has been revised. This leads to an increase in energy consumption during distillation. Key indicators of the normal regime relative to the level of feed and the temperature of the liquid are shown in the text.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 792
Author(s):  
Nurul Izzah Khalid ◽  
Nurul Shaqirah Sulaiman ◽  
Norashikin Ab Aziz ◽  
Farah Saleena Taip ◽  
Shafreeza Sobri ◽  
...  

Electrolyzed water (EW) shows great potential as a green and economical sanitation solution for the food industry. However, only limited studies have investigated the optimum electrolysis parameters and the bactericidal effect of acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW). Here, the Box–Behnken experimental design was used to identify the optimum parameters. The tests were conducted with different types of electrodes, electrical voltages, electrolysis times, and NaCl concentrations. There were no obvious differences observed in the physico-chemical properties of EW when different electrodes were used. However, stainless steel was chosen as it meets most of the selection criteria. The best-optimized conditions for AcEW were at 11.39 V, 0.65 wt.% NaCl, and 7.23 min, while the best-optimized conditions for AlEW were at 10.32 V, 0.6 wt.% NaCl, and 7.49 min. The performance of the optimum EW (AcEW and AlEW) compared with commercial cleaning detergents for the food industry was then evaluated. The bactericidal activity of AcEW and AlEW was examined against Escherichia coli ATCC 10536 at different temperatures (30 °C and 50 °C) for 30 s. The results show that both AcEW and AlEW have the ability to reduce the Escherichia coli to non-detectable levels (less than 2 log CFU/mL).


2013 ◽  
Vol 675 ◽  
pp. 248-251
Author(s):  
Zhuo Li ◽  
Chang Ping Li

As a new environmentally friendly solvent, ionic liquids have been investigated widely. The lack of physico-chemical properties data of ionic liquids has become a bottleneck that restricts their applications. In this study, the investigation of the density for binary mixtures of CnpyNTf2 (n = 2, 4, 5) and methanol is measured using Westphal balance. This study would be very important for the application of binary mixtures of ionic liquid and methanol in developing new energy storage material.


2014 ◽  
Vol 24 (1-2) ◽  
pp. 149-158
Author(s):  
MAK Talukder ◽  
MA Hashem ◽  
SME Rahman ◽  
MS Islam ◽  
MM Hossain ◽  
...  

The experiment was conducted to find out the effect of salt and storage temperature on the physico-chemical properties of beef nugget. For this purpose nugget samples were divided into two parts; one is called fresh nugget and another is preserved nugget at different temperatures. Then the fresh samples as well as the preserved samples were divided into four subdivisions. Then these are treated with different salt levels (0, 1.5, 3 and 5% salt level). The preserved samples were stored at 4oC and -20oC. Samples preserved at 4oC were stored in the refrigerator for 21 days and were analyzed on 7th day, 14th day and 21th day and samples preserved at -20oC were stored in the refrigerator for 60 days and were analyzed on 15th day, 30th day, 45th day and 60th day of preservation. Dry matter and Ash content of all the samples increased significantly (P<0.01) with the advancement of storage time and salt level. CP% of fresh samples was 22.31, 20.55, 20.13 and 20.55 at 0, 1.5, 3 and 5% salt concentration. CP, DM, Ash and Fat also varied among the samples significantly (P<0.01). Highly significant difference is observed in preserved samples than in fresh samples at different salt levels. Fresh nugget treated with 1.5% salt found to be more acceptable in terms of sensory evaluation. So we recommend fresh nugget to be best for consumption.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19280 Progress. Agric. 24(1&2): 149 - 158, 2013


2018 ◽  
Vol 5 (8) ◽  
pp. 172346 ◽  
Author(s):  
Xianjun Xing ◽  
Fangyu Fan ◽  
Wen Jiang

Biomass resources have the potential to produce clean-energy. However, their physico-chemical properties are inferior to those of coal, and thus, biomass resources are not regarded as ideal feedstock for industrial application. In the present study, the pyrolysis of corn (maize) straw pellets was performed under different temperatures (400, 450, 500, 550 and 600°C) at a 10°C min −1 heating rate and 30 min residence time, and the characteristics of biochar pellets were carefully investigated, particularly their elemental composition, hydrophobicity and mechanical resistance. Fourier transform infrared, proximate analysis and scanning electron microscopy were performed. Results indicated that the mass and energy yields of the biochar pellets decreased from 35.46 to 28.65% and from 50.17 to 45.52%, respectively, at increased temperature. Meanwhile, the higher heating value of the biochar pellets increased from 15.45 MJ kg −1 in the raw materials to 21.86 and 24.55 MJ kg −1 in the biochar produced at 400 and 600°C, respectively. In addition, biochar pellets showed good hydrophobicity, which benefited their storage and transportation, though mechanical resistance decreased. The pellets had compact structures, regular shapes and weakened or no functional groups in contrast with raw pellets, and these properties played important roles in the improvements.


Sign in / Sign up

Export Citation Format

Share Document