Investigation on solute–solvent interactions of glycine, l -alanine and l -valine in aqueous tetraethylammonium iodide solutions at different temperatures with reference to volumetric and acoustic measurements

2015 ◽  
Vol 91 ◽  
pp. 346-359 ◽  
Author(s):  
Suresh Kumar Sharma ◽  
Gurpreet Singh ◽  
Ramesh Kataria ◽  
Harsh Kumar
2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


2017 ◽  
Vol 27 (4) ◽  
Author(s):  
Ahmed Mohammed Abbas ◽  
Zainab Wajdi Ahmed ◽  
Alaa Fadhil Sulaiman ◽  
Issam AbdalKreem AbdalLatif

In this study binary and ternary solutions are prepared by using the sodium acetate concentrations (0.1, 0.125, 0.2, 0.25, 0.4, 0.5, 0.8, 1 M) in water and acetone –water mixtures .The important parameters such as apparent molal volume, the partial molal volume transfer,  apparent  molal compressibility, free energy of activation of viscous flow and thermodynamic activation parameter (enthalpy and entropy) determined of sodium acetate in water , 20%, 40% ,60% and 80% V/V acetone –water mixtures at 298.15K, 303.15K, and 308.15K from density and viscosity measurements espectively. The limiting apparent molal volumes and experimental slopes were derived from the Masson equation, have been interpreted in terms of solute–solvent and solute–solute interactions  respectively. The viscosity data were analyzed using theJones–Dole equation and the derived parameter B - coefficient has also been interpreted in terms of solute–solvent interactions in the solutions. 


2016 ◽  
Vol 39 (1) ◽  
pp. 13-25
Author(s):  
Karol Monkos

Abstract The paper presents the results of viscosity determinations on aqueous solutions of ovalbumin at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and three models of viscosity for glass-forming liquids: Avramov’s model, free-volume model and power-law model, the activation energy of viscous flow for solutions and ovalbumin molecules, at different temperatures, was calculated. The obtained results show that activation energy monotonically decreases with increasing temperature both for solutions and ovalbumin molecules. The influence of the energy of translational heat motion, protein-protein and protein-solvent interactions, flexibility and hydrodynamic radius of ovalbumin on the rate of decrease in activation energy with temperature has been discussed. One of the parameters in the Avramov’s equation is the glass transition temperature Tg. It turns out that the Tg of ovalbumin solutions increases with increasing concentration. To obtain the glass transition temperature of the dry ovalbumin, a modified Gordon-Taylor equation is used. Thus determined the glass transition temperature for dry ovalbumin is equal to (231.8 ± 6.1) K.


1987 ◽  
Vol 65 (12) ◽  
pp. 2843-2848
Author(s):  
Sibaprasad Rudra ◽  
Himansu Talukdar ◽  
Kiron K. Kundu

Standard free energies [Formula: see text] and entropies [Formula: see text] of transfer of hydrogen bromide and iodide from water to the aqueous 1, 2, and 4 m of sodium nitrate have been determined by measuring the emf's of the cell: Pt, H2(g, 1 atm)/KOH(m1), KX(m2), solvent/AgX–Ag where X = Br or I at five equidistant temperatures ranging from 15–35°C. [Formula: see text] values of HBr, HI as well as that of HCl obtained from earlier paper and particularly of the individual ions [Formula: see text](i), obtained by use of modified TATB assumption reported earlier and also [Formula: see text](i) obtained after correcting for "cavity" effect and Born-type electrostatic effect estimated tentatively by the scaled particle theory (SPT) and simple Bom equation, respectively, reveal the relative order of stabilisation of Cl−, Br−, and I− ions. Analysis of [Formula: see text]–composition profile (X = Cl, Br, and I) exhibits a characteristic "maxima" around 1.5 m NaNO3 with the relative order HI > HBr > HCl in the region of maxima. Moreover, dissection of [Formula: see text] values into the individual ion contributions by use of the modified TATB assumption reported earlier, results in the characteristic "maxima" around 1.5 m NaNO3 in [Formula: see text] or [Formula: see text]–composition profiles for H+ and "minima" for Cl−, Br−, and I−. The results are discussed in terms of ion–ion–solvent interactions as well as the structural changes of the solvents.


1981 ◽  
Vol 59 (1) ◽  
pp. 123-126 ◽  
Author(s):  
Om. N. Bhatnagar ◽  
Alan N. Campbell

The vapour pressure lowering, ΔP, of sodium sulphate solutions in water was measured in the concentration range 0.4 to 1.8 m and the temperature range 50 to 150 °C by the use of a differential manometer. ΔP values were used to calculate the osmotic coefficient of sodium sulphate solutions. Pitzer's equation for osmotic coefficients was used to evaluate βMX(0), βMX(1), and [Formula: see text] at each temperature. An attempt has been made to explain the changes in these constants in terms of the ion–ion and ion–solvent interactions. Using these constants, the mean activity coefficients, γ±, of sodium sulphate were calculated at different temperatures and concentrations using Pitzer's equation.


Sign in / Sign up

Export Citation Format

Share Document