Apparent molar volume, isentropic compressibilities, viscosity B-coefficients and activation parameters of thiamine hydrochloride in aqueous solutions of saccharides at different temperatures

2020 ◽  
Vol 150 ◽  
pp. 106228 ◽  
Author(s):  
Richu ◽  
Ashwani Kumar
2021 ◽  
Vol 12 (1) ◽  
pp. 339-350

Volumetric and viscometric properties of solutions containing barium bromide in an aqueous solution of ethylene glycol and 1,4-dioxane have been discussed at different temperatures such as 298.15K 303.15K, 308.15K, and 313.15K. The Masson’s equation was used to determine the apparent molar volume, V_ϕ, standard partial molar volume, V_ϕ^0, molar expansibilities,E_ϕ^0 by taking the density data. The values of viscosity and density were used in the Jones-Dole equation to find the viscosity B coefficients, which were used to estimate the ion-solvent interactions. The values of Hepler’s constant (∂^2 V_ϕ^0/ ∂T2)p and the viscosity B-coefficients have been used to deduce the solvent structure-promoting or structure breaking tendency of the salt in the studied mixtures. In the current study, the positive values of Hepler’s constant and the negative values of dB/dT show that barium bromide in the considered solvents mainly behaves as a structure promoter.


2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


2015 ◽  
Vol 37 ◽  
pp. 28-35 ◽  
Author(s):  
Muhammad Asghar Jamal ◽  
Ammar Bin Yousaf ◽  
Muhammad Kaleem Khosa ◽  
Muhammad Usman ◽  
Majid Khan

Magnetite nanofluid has been prepared in citric acid based medium. Their stability and polydispersity level have been characterized by UV-visible spectrophotometry.The volumetric properties such as apparent molar volume, partial molar volume and isentropic compressibility of nanofluid have been measured at temperature range from 298.15K to 313.15K at atmospheric pressure. The obtained results were interpreted in terms of particle-particle and particle-fluid interactions, and compared with commercially available magnetite nanofluid in terms of particle size difference. It was observed that the influence of particle size on measured volumetric parameters is significant for any practical applications of fluid flow. The differences in measured quantities were determined qualitatively by considering the state of aggregation / particle size distribution of the nanofluids.


2020 ◽  
Vol 10 (01) ◽  
pp. 170-174 ◽  
Author(s):  
Sundus H. Merza ◽  
Nagham H. Abood ◽  
Ahamed M. Abbas

The interactions of drug amoxicillin with maltose or galactose solutions with a variation of temperature have been discussed by taking in the volumetric and viscometric procedures. Physical properties [densities (ρ) and viscosities (η)] of amoxicillin (AMOX) aqueous solutions and aqueous solutions of two type saccharides (maltose and galactose 0.05m) have been measured at T = (298.15, 303.15 and 308.15) K under atmospheric pressure. The apparent molar volume (ϕv cm3mole-1) has been evaluated from density data and fitted to a Redlich-Mayer equation. The empirical parameters of the Mayer-Redlich equation and apparent molar volume at infinite dilution Ø°v were explicated in terms of interactions from type solute-solvent and solute–solute interactions. Transfer molar volume ΔtraØ°v for AMOX from water to aqueous maltose and galactose solutions were calculated to comprehend different interactions in the ternary solutions. Limiting apparent molar expansibility (Ø°E) and Hepler’s coefficient was also calculated to indicate the structure making ability of AMOX in the ternary solutions. Jones–Dole coefficient B and A have been calculated from viscosity data by employing the Jones–Dole equation. The free energy of activation of viscous flow per mole of the solute (Δμ°2*) and solvent (Δμ°1*) have been explained on the basis of the Eyring and Feakins equation.


1985 ◽  
Vol 63 (6) ◽  
pp. 1180-1184 ◽  
Author(s):  
Anil K. Puri

Partial molar volume [Formula: see text] partial molar compressibility [Formula: see text] Jones–Dole viscosity B coefficient, and solute activation parameters of adenosine in water–DMSO mixtures in the presence of Ca2+ and K+ ions have been calculated from ultrasonic, volumetric, and viscometric studies at 25, 30, 35, and 40 °C(± 0.01° C). The results are discussed in terms of the Jones–Dole viscosity B coefficients and the transition state parameters for viscous flow.


Sign in / Sign up

Export Citation Format

Share Document