Use of a low-cost passive freezing device in the effective cryopreservation and recovery of human regulatory T-cells for use in a cell therapy trial

Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S28-S29
Author(s):  
A. Foussat ◽  
R. Rietze ◽  
M. Thompson ◽  
B. Schryver ◽  
R. Ehrhardt
2022 ◽  
Vol 10 (1) ◽  
pp. e003633
Author(s):  
Jiemiao Hu ◽  
Qing Yang ◽  
Wendong Zhang ◽  
Hongwei Du ◽  
Yuhui Chen ◽  
...  

BackgroundAdoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors, but its clinical application has been stalled because of toxicity. Here, we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors.MethodsWe generated a cell membrane-anchored IL-12 (aIL12), a tumor-targeted IL-12 (ttIL12), and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells, chimeric antigen receptor-T cells, and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells.ResultsattIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically, attIL12-T cells targeted tumor cells expressing cell-surface vimentin, enriching effector T cell and interferon γ production in tumors, which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects.ConclusionsThis novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S135-S136
Author(s):  
V. Roobrouck ◽  
J. Beyens ◽  
E. Van Houtven ◽  
J. Reading ◽  
C. Hull ◽  
...  

Author(s):  
F. Idali ◽  
S. Rezaii-nia ◽  
H. Golshahi ◽  
R. Fatemi ◽  
M. M. Naderi ◽  
...  

Gut ◽  
2020 ◽  
Vol 69 (5) ◽  
pp. 942-952 ◽  
Author(s):  
Jennie N Clough ◽  
Omer S Omer ◽  
Scott Tasker ◽  
Graham M Lord ◽  
Peter M Irving

The prevalence of IBD is rising in the Western world. Despite an increasing repertoire of therapeutic targets, a significant proportion of patients suffer chronic morbidity. Studies in mice and humans have highlighted the critical role of regulatory T cells in immune homeostasis, with defects in number and suppressive function of regulatory T cells seen in patients with Crohn’s disease. We review the function of regulatory T cells and the pathways by which they exert immune tolerance in the intestinal mucosa. We explore the principles and challenges of manufacturing a cell therapy, and discuss clinical trial evidence to date for their safety and efficacy in human disease, with particular focus on the development of a regulatory T-cell therapy for Crohn’s disease.


Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 381-388 ◽  
Author(s):  
Mariana Mesel-Lemoine ◽  
Mustapha Cherai ◽  
Sabine Le Gouvello ◽  
Maude Guillot ◽  
Virginie Leclercq ◽  
...  

Abstract We investigated the causes of the altered functionality of T cells cultured under conditions designed for cell and gene therapy and the strategies to prevent their defects. We first showed that human T cells cultured for 6 days with anti-CD3 ± anti-CD28 antibodies and interleukin-2 presented a 50% decrease of their proliferative responses to allogeneic or recall antigens. Similarly, day-6 cultured murine T cells completely lost their capacity to reject allogeneic skin grafts and to provoke graft-versus-host disease (GVHD) when infused into irradiated semi-allogeneic mice. Interestingly, injection of higher amounts of cultured T cells restored GVHD induction. Moreover, depletion of CD25+ cells prior to T-cell cultures can prevent these deficiencies both in mice and humans. Therefore, we demonstrated that culture conditions used for T-cell therapy preferentially activated and expanded regulatory T cells (Treg's). Thus, we showed that dividing cells sorted from T-cell cultures strongly suppressed the proliferation of autologous T cells in response to allogeneic stimulation. An increased detection of Foxp3 at mRNA and protein levels in the cultures confirmed the Treg expansion. Overall, we demonstrate that T-cell cultures promote Treg expansion over effector T cells, leading to deleterious immune functions, and that this imbalance can be prevented by an initial depletion of CD25+ cells.


Sign in / Sign up

Export Citation Format

Share Document