Manufacturing A Donor Lymphocyte Product Depleted Of TCR-αβ T Cells And CD19+ B Cells For Prophylactic Infusion Following Allogeneic Stem Cell Transplantation

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S134
Author(s):  
F. Otegbeye ◽  
C. Ramsey ◽  
R. Fox ◽  
T.L. Turney ◽  
M. Garcia ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 4919-4927 ◽  
Author(s):  
Alexander Shimabukuro-Vornhagen ◽  
Michael J. Hallek ◽  
Rainer F. Storb ◽  
Michael S. von Bergwelt-Baildon

Abstract Allogeneic hematopoietic stem cell transplantation is an established treatment modality for malignant and nonmalignant hematologic diseases. Acute and chronic graft-versus-host diseases (GVHDs) are a major cause of morbidity and mortality after allogeneic stem cell transplantation. T cells have been identified as key players in the graft-versus-host reaction and, therefore, most established drugs used against GVHD target T cells. Despite our knowledge on the pathogenesis of the GVH reaction, success of established therapies for prevention and treatment of GHVD is unsatisfactory. Recently, animal and human studies demonstrated that B cells are involved in the immunopathophysiology of acute and chronic GVHD. Early phase clinical trials of B-cell depletion with rituximab have shown beneficial effects on both acute and chronic GVHD. This review summarizes the current experimental and clinical evidence for the involvement of B cells in the pathogenesis of acute and chronic GVHD and discusses the clinical implications for the management of patients undergoing allogeneic stem cell transplantation.


Blood ◽  
2013 ◽  
Vol 121 (18) ◽  
pp. 3745-3758 ◽  
Author(s):  
Emily Blyth ◽  
Leighton Clancy ◽  
Renee Simms ◽  
Chun K. K. Ma ◽  
Jane Burgess ◽  
...  

Key Points Infusion of CMV-specific T cells early posttransplant does not increase acute or chronic graft-versus-host disease. CMV-specific T cells early posttransplant reduce the need for pharmacotherapy without increased rates of CMV-related organ damage.


PLoS ONE ◽  
2008 ◽  
Vol 3 (11) ◽  
pp. e3634 ◽  
Author(s):  
Thomas Widmann ◽  
Urban Sester ◽  
Barbara C. Gärtner ◽  
Jörg Schubert ◽  
Michael Pfreundschuh ◽  
...  

2022 ◽  
Vol 11 (1) ◽  
pp. 270
Author(s):  
Martina Hinterleitner ◽  
Clemens Hinterleitner ◽  
Elke Malenke ◽  
Birgit Federmann ◽  
Ursula Holzer ◽  
...  

Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels.


2012 ◽  
Vol 189 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Willemijn Hobo ◽  
Wieger J. Norde ◽  
Nicolaas Schaap ◽  
Hanny Fredrix ◽  
Frans Maas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document