Intensification of brewery wastewater purification integrated with CO2 fixation via microalgae co-cultivation

Author(s):  
Xiaoxuan Han ◽  
Xiaofang Hu ◽  
Qingrong Yin ◽  
Shuhong Li ◽  
Chunfeng Song
2018 ◽  
Vol 2018 (13) ◽  
pp. 2295-2298
Author(s):  
A. di Biase ◽  
S.F Corsino ◽  
T.R Devlin ◽  
M Torregrossa ◽  
G Munz ◽  
...  

2020 ◽  
Vol 309 ◽  
pp. 123400 ◽  
Author(s):  
M. Venkateswar Reddy ◽  
Gopalakrishnan Kumar ◽  
Gunda Mohanakrishna ◽  
Sutha Shobana ◽  
Riyadh I. Al-Raoush

2021 ◽  
Author(s):  
Faezeh Taghavi ◽  
Amir Khojastehnezhad ◽  
Reza Khalifeh ◽  
Maryam Rajabzadeh ◽  
Fahimeh Rezaei ◽  
...  

The first report of the use of an acidic magnetic metal organic framework for the chemical fixation of CO2 as an environmentally friendly reaction.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3083
Author(s):  
Wisam A. Al Isawi ◽  
Gellert Mezei

Anion binding and extraction from solutions is currently a dynamic research topic in the field of supramolecular chemistry. A particularly challenging task is the extraction of anions with large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization mass spectrometric (including tandem MS/MS) studies in solution.


2021 ◽  
Vol 149 ◽  
pp. 110397
Author(s):  
Tianfo Guo ◽  
Yongqiang Li ◽  
Zhenjiang Li ◽  
Haoying Tong ◽  
Luoyu Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document