Transfer of tetracyclines across the H2O|1,2-dichloroethane interface: Analysis of degraded products in strong acid and alkaline solutions

2005 ◽  
Vol 585 (2) ◽  
pp. 240-249 ◽  
Author(s):  
R.A. Fernández ◽  
S.A. Dassie
2020 ◽  
Vol 10 (3) ◽  
pp. 1081 ◽  
Author(s):  
Jie Deng ◽  
Zhu Peng ◽  
Zhe Xiao ◽  
Shuang Song ◽  
Hui Dai ◽  
...  

Carbon-based materials, as some of the most important electrode materials for supercapacitors (SC), have spurred enormous attentions. Now, it is highly desirable but remains an open challenge to design stable and high-capacity carbons for further enhancing supercapacitive function. Here, a facile chemical activation recipe is introduced to develop biomass-derived functional carbons using cheap and abundant natural resources, anthracite, as the heteroatom-rich carbon sources, and potassium hydroxide (KOH) as activator. These porous carbons have high BET surface areas of roughly 2814 m2 g−1, large pore volumes of up to 1.531 cm3 g−1, and a high porosity that combines micro- and small-sized mesopores. The optimal nanocarbon features two additional outstanding virtues: an appropriate N-doping level (2.77%) and a uniform pore size distribution in the narrow range of 1–4 nm. Synergy of the above unique structural traits and desirable chemical composition endows resultant samples with the much boosted supercapacitive property with remarkable specific capacitance at varied current densities (e.g., 325 F g−1 at 0.5 A/g), impressive energy/power density, and long cycling stability over 5000 cycles at 10 A g−1 (92% capacity retention). When constructing the symmetric supercapacitor utilizing a common neutral Na2SO4 electrolyte that can strongly circumvent the corrosion effect occurring in the strong acid/alkaline solutions, both an elevated operation voltage at 1.8 V and a fascinating energy density of 23.5 Wh kg−1 are attained. The current study paves the way to explore the stable, efficient, and high-voltage SC assembled by the anthracite-derived porous doped nanocarbons for a wide spectrum of applications like automobiles, vehicle devices, and so on.


1930 ◽  
Vol 14 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Henry S. Simms

The author corroborates the data of Schmidt showing that the dissociation index of the third group of arginine is pK3' = 12.5. New titration data of edestin have been obtained in very alkaline solutions and show that there is a corresponding group with a titration index of pG' = 12.0, but present in much less quantity than can account for the arginine found on hydrolysis. The data support the theory that the combination of strong base or strong acid with proteins is produced by the formation of salts with the "extra groups" of those trivalent amino acids which can be isolated from the protein, with the exception of arginine. Arginine contributes to the titration curve in much smaller amount than is found on hydrolysis. This deficiency in the arginine group may be accounted for by the basic group in proteins having a titration index of pG' = 3.8 to 4.6 (depending on the protein), which apparently yields arginine on hydrolysis, and may properly be called prearginine.


1934 ◽  
Vol 17 (4) ◽  
pp. 591-615 ◽  
Author(s):  
M. Kunitz ◽  
John H. Northrop

1. The rate of inactivation of crystalline trypsin solutions and the nature of the products formed during the inactivation at various pH at temperatures below 37°C. have been studied. 2. The inactivation may be reversible or irreversible. Reversible inactivation is accompanied by the formation of reversibly denatured protein. This denatured protein exists in equilibrium with the native active protein and the equilibrium is shifted towards the denatured form by raising the temperature or by increasing the alkalinity. The decrease in the fraction of active enzyme present (due to the formation of this reversibly denatured protein) as the pH is increased from 8.0 to 12.0 accounts for the decrease in the rate of digestion of proteins by trypsin in this range of pH. 3. The loss of activity at high temperatures or in alkaline solutions, just described, is very rapid and is completely reversible for a short time only. If the solutions are allowed to stand the loss in activity becomes gradually irreversible and is accompanied by the appearance of various reaction products the nature of which depends upon the temperature and pH of the solution. 4. On the acid side of pH 2.0 the trypsin protein is changed to an inactive form which is irreversibly denatured by heat. The course of the reaction in this range is monomolecular and its velocity increases as the acidity increases. 5. From pH 2.0 to 9.0 trypsin protein is slowly hydrolyzed. The course of the inactivation in this range of pH is bimolecular and its velocity increases as the alkalinity increases to pH 10.0 and then decreases. As a result of these two reactions there is a point of maximum stability at about pH 2.3. 6. On the alkaline side of pH 13.0 the reaction is similar to that in strong acid solution and consists in the formation of inactive protein. The course of the reaction is monomolecular and the velocity increases with increasing alkalinity. From pH 9.0 to 12.0 some hydrolysis takes place and some inactive protein is formed and the course of the reaction is represented by the sum of a bi- and monomolecular reaction. The rate of hydrolysis decreases as the solution becomes more alkaline than pH 10.0 while the rate of formation of inactive protein increases so that there is a second point at about pH 13.0 at which the rate of inactivation is a minimum. In general the decrease in activity under all these conditions is proportional to the decrease in the concentration of the trypsin protein. Equations have been derived which agree quantitatively with the various inactivation experiments.


2006 ◽  
Vol 24 (3) ◽  
pp. 377-385
Author(s):  
I Mickova ◽  
P Abdurauf ◽  
T Grcev ◽  
L Arsov

1991 ◽  
Vol 3 (1) ◽  
pp. 75-81 ◽  
Author(s):  
P.V. Bobrov ◽  
Yu.A. Tarantov ◽  
S. Krause ◽  
W. Moritz

1994 ◽  
Vol 91 ◽  
pp. 901-908 ◽  
Author(s):  
H Zanni ◽  
P Nieto ◽  
L Fernandez ◽  
R Couty ◽  
P Barret ◽  
...  

TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 35-41
Author(s):  
OUTI A. HYÖKYVIRTA ◽  
TOM E. GUSTAFSSON

This investigation evaluated the applicability of a molybdenum sulfide reference electrode (MSRE) as an internal reference electrode for use in alkaline sulfide solutions over a range of pulp digester liquors at 170°C. The electrode remained stable during the exposure period of two weeks. The experimentally determined half cell potential of the MSRE is E = -0.91 VSHE. The surface of the MSRE was examined by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA) to verify the chemical composition of the thin surface film. Based on ESCA studies, the surface film contained molybdenum disulfide and sodium disulfide. During storage of the specimens, sulfide was partly oxidized to sodium sulfite in air. Next to the metallic molybdenum, a mixed molybdenum disulfide and molybdenum hydroxide layer was detected.


1990 ◽  
Vol 45 (2) ◽  
pp. 231-244 ◽  
Author(s):  
H. A. Nasr-El-Din ◽  
K. C. Khulbe ◽  
V. Hornof ◽  
G. H. Neale

Sign in / Sign up

Export Citation Format

Share Document