Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity

2009 ◽  
Vol 19 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Kathleen A. Bieryla ◽  
Dennis E. Anderson ◽  
Michael L. Madigan
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6068
Author(s):  
Antti Löppönen ◽  
Laura Karavirta ◽  
Erja Portegijs ◽  
Kaisa Koivunen ◽  
Taina Rantanen ◽  
...  

(1) Background: The purpose of this study was to evaluate the day-to-day variability and year-to-year reproducibility of an accelerometer-based algorithm for sit-to-stand (STS) transitions in a free-living environment among community-dwelling older adults. (2) Methods: Free-living thigh-worn accelerometry was recorded for three to seven days in 86 (women n = 55) community-dwelling older adults, on two occasions separated by one year, to evaluate the long-term consistency of free-living behavior. (3) Results: Year-to-year intraclass correlation coefficients (ICC) for the number of STS transitions were 0.79 (95% confidence interval, 0.70–0.86, p < 0.001), for mean angular velocity—0.81 (95% ci, 0.72–0.87, p < 0.001), and maximal angular velocity—0.73 (95% ci, 0.61–0.82, p < 0.001), respectively. Day-to-day ICCs were 0.63–0.72 for number of STS transitions (95% ci, 0.49–0.81, p < 0.001) and for mean angular velocity—0.75–0.80 (95% ci, 0.64–0.87, p < 0.001). Minimum detectable change (MDC) was 20.1 transitions/day for volume, 9.7°/s for mean intensity, and 31.7°/s for maximal intensity. (4) Conclusions: The volume and intensity of STS transitions monitored by a thigh-worn accelerometer and a sit-to-stand transitions algorithm are reproducible from day to day and year to year. The accelerometer can be used to reliably study STS transitions in free-living environments, which could add value to identifying individuals at increased risk for functional disability.


Author(s):  
Vishesh Vikas ◽  
Carl D. Crane

Knowledge of joint angles, angular velocities is essential for control of link mechanisms and robots. The estimation of joint angles and angular velocity is performed using combination of inertial sensors (accelerometers and gyroscopes) which are contactless and flexible at point of application. Different estimation techniques are used to fuse data from different inertial sensors. Bio-inspired sensors using symmetrically placed multiple inertial sensors are capable of instantaneously measuring joint parameters (joint angle, angular velocities and angular acceleration) without use of any estimation techniques. Calibration of inertial sensors is easier and more reliable for accelerometers as compared to gyroscopes. The research presents gyroscope-less, multiple accelerometer and magnetometer based sensors capable of measuring (not estimating) joint parameters. The contribution of the improved sensor are four-fold. Firstly, the inertial sensors are devoid of symmetry constraint unlike the previously researched bio-inspired sensors. However, the accelerometer are non-coplanarly placed. Secondly, the accelerometer-magnetometer combination sensor allows for calculation of a unique rotation matrix between two link joined by any kind of joint. Thirdly, the sensors are easier to calibrate as they consist only of accelerometers. Finally, the sensors allow for calculation of angular velocity and angular acceleration without use of gyroscopes.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2759 ◽  
Author(s):  
Eric Allseits ◽  
Kyoung Kim ◽  
Christopher Bennett ◽  
Robert Gailey ◽  
Ignacio Gaunaurd ◽  
...  

Tele-rehabilitation of patients with gait abnormalities could benefit from continuous monitoring of knee joint angle in the home and community. Continuous monitoring with mobile devices can be restricted by the number of body-worn sensors, signal bandwidth, and the complexity of operating algorithms. Therefore, this paper proposes a novel algorithm for estimating knee joint angle using lower limb angular velocity, obtained with only two leg-mounted gyroscopes. This gyroscope only (GO) algorithm calculates knee angle by integrating gyroscope-derived knee angular velocity signal, and thus avoids reliance on noisy accelerometer data. To eliminate drift in gyroscope data, a zero-angle update derived from a characteristic point in the knee angular velocity is applied to every stride. The concurrent validity and construct convergent validity of the GO algorithm was determined with two existing IMU-based algorithms, complementary and Kalman filters, and an optical motion capture system, respectively. Bland–Altman analysis indicated a high-level of agreement between the GO algorithm and other measures of knee angle.


Ergonomics ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 1536-1540 ◽  
Author(s):  
Ulrich Lindemann ◽  
Leon van Oosten ◽  
Jordi Evers ◽  
Clemens Becker ◽  
Jaap H. van Dieen ◽  
...  

Robotica ◽  
2005 ◽  
Vol 24 (3) ◽  
pp. 355-363 ◽  
Author(s):  
S. Bulut ◽  
M. B. Terzioǧlu

In this paper, the joint angles of a two link planar manipulator are calculated by using inverse kinematics equations together with some geometric equalities. For a given position of the end-effector the joint angle and angular velocity of the links are derived. The analyses contains many equations which have to be solved. However, the solutions are rather cumbersome and complicated, therefore a program is written in Fortran 90 in order to do, the whole calculation and data collection. The results are given at the end of this paper.


2012 ◽  
Vol 279 (1736) ◽  
pp. 2106-2115 ◽  
Author(s):  
Neale A. Tillin ◽  
Matthew T. G. Pain ◽  
Jonathan P. Folland

The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to M max (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy.


2018 ◽  
Vol 125 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Nicholas T. Kruse ◽  
William E. Hughes ◽  
Darren P. Casey

The aim of this study was to examine the independent contributions of joint range of motion (ROM), muscle fascicle length (MFL), and joint angular velocity on mechanoreceptor-mediated central cardiovascular dynamics using passive leg movement (PLM) in humans. Twelve healthy men (age: 23 ± 2 yr, body mass index: 23.7 kg/m2) performed continuous PLM at various randomized joint angle ROMs (0°–50° vs. 50°–100° vs. 0°–100°) and joint angular velocities (“fast”: 200°/s vs. “slow”: 100°/s). Measures of heart rate (HR), cardiac output (CO), and mean arterial pressure (MAP) were recorded during baseline and during 60 s of PLM. MFL was calculated from muscle architectural measurements of fascicle pennation angle and tissue thickness (Doppler ultrasound). Percent change in MFL increased across the transition of PLM from 0° to 50° (15 ± 3%; P < 0.05) and from 0° to 100° knee flexion (27 ± 4%; P < 0.05). The average peak percent change in HR (increased, approx. +5 ± 2%; P < 0.05), CO (increased, approx. +5 ± 3%; P < 0.05), and MAP (decreased, approx. −2 ± 2%; P < 0.05) were similar between fast versus slow angular velocities when compared against shorter absolute joint ROMs (i.e., 0°–50° and 50°–100°). However, the condition that exhibited the greatest angular velocity in combination with ROM (0°–100° at 200°/s) elicited the greatest increases in HR (+13 ± 2%; P < 0.05) and CO (+12 ± 2%; P < 0.05) compared with all conditions. Additionally, there was a significant relationship between MFL and HR within 0°–100° at 200°/s condition ( r2 = 0.59; P < 0.05). These findings suggest that increasing MFL and joint ROM in combination with increased angular velocity via PLM are important components that activate mechanoreflex-mediated cardioacceleration and increased CO. NEW & NOTEWORTHY The mechanoreflex is an important autonomic feedback mechanism that serves to optimize skeletal muscle perfusion during exercise. The present study sought to explore the mechanistic contributions that initiate the mechanoreflex using passive leg movement (PLM). The novel findings show that progressively increasing joint angle range of motion and muscle fascicle length via PLM, in combination with increased angular velocity, are important components that activate mechanoreflex-mediated cardioacceleration and increase cardiac output in humans.


2019 ◽  
Vol 51 (34) ◽  
pp. 214-219
Author(s):  
Gaurav Patil ◽  
Lillian Rigoli ◽  
Michael J. Richardson ◽  
Manish Kumar ◽  
Adam W. Kiefer ◽  
...  

2019 ◽  
Vol 48 (Supplement_4) ◽  
pp. iv1-iv2
Author(s):  
Koyama Shota ◽  
Asai Tsuyoshi ◽  
Oshima Kensuke ◽  
Fukumoto Yoshihiro ◽  
Kubo Hiroki

Abstract Background The sit-to-stand test (STS) is a representative motor test. In most of STS, the time taken to complete the test was used as its score, and its quality of motion has not been focused. In the present study, we measured the lower trunk angular velocity using gyro sensor during STS and computed the angular velocity-based indices (AV-index). We investigated its test-retest reliability and concurrent validity. Method Seventy-eight older people in community-dwelling were participated. Basic-health-related-information and the previous one-year fall-history were obtained by a questionnaire. As motor-function tests, One Leg Standing test (OLS), 3 minutes walking test (3MWT), Timed Up and Go test (TUG) were performed. Additionally, Modify Five-Times-STS was performed twice, the lower trunk angular velocity during the tests were measured using gyro sensor. From the obtained-signal waveforms in the sagittal plane (SP), root mean square (RMS) and coefficient of auto correlation (AC), the mean impact at sitting timing (STS impact) in Modify Five-Times-STS were computed. The intra-class correlation coefficient (ICC) was calculated for the test-retest reliability of the AV-indices. The coefficients of Pearson’s correlation were computed between AV-indices and the Five-Times-STS score, and scores of motor-function tests. Result The ICC of STS impact and RMS in SP were 0.85. The ICC of the other AV-index were lower than 0.5. The RMS in SP was significantly associated with OLS (r = 0.24), and 3MWT (r = 0.36), TUG (r = −0.32). Additionally, the STS impact was significantly associated with 3MWT (r = 0.54). Conclusions The test-retest reliability of two AV-index (STS impact and RMS in SP) is good. The concurrent validity of AV-index is partly confirmed.


Sign in / Sign up

Export Citation Format

Share Document