Joint angle variations analyses of the two link planar manipulator in welding by using inverse kinematics

Robotica ◽  
2005 ◽  
Vol 24 (3) ◽  
pp. 355-363 ◽  
Author(s):  
S. Bulut ◽  
M. B. Terzioǧlu

In this paper, the joint angles of a two link planar manipulator are calculated by using inverse kinematics equations together with some geometric equalities. For a given position of the end-effector the joint angle and angular velocity of the links are derived. The analyses contains many equations which have to be solved. However, the solutions are rather cumbersome and complicated, therefore a program is written in Fortran 90 in order to do, the whole calculation and data collection. The results are given at the end of this paper.

Author(s):  
Vishesh Vikas ◽  
Carl D. Crane

Knowledge of joint angles, angular velocities is essential for control of link mechanisms and robots. The estimation of joint angles and angular velocity is performed using combination of inertial sensors (accelerometers and gyroscopes) which are contactless and flexible at point of application. Different estimation techniques are used to fuse data from different inertial sensors. Bio-inspired sensors using symmetrically placed multiple inertial sensors are capable of instantaneously measuring joint parameters (joint angle, angular velocities and angular acceleration) without use of any estimation techniques. Calibration of inertial sensors is easier and more reliable for accelerometers as compared to gyroscopes. The research presents gyroscope-less, multiple accelerometer and magnetometer based sensors capable of measuring (not estimating) joint parameters. The contribution of the improved sensor are four-fold. Firstly, the inertial sensors are devoid of symmetry constraint unlike the previously researched bio-inspired sensors. However, the accelerometer are non-coplanarly placed. Secondly, the accelerometer-magnetometer combination sensor allows for calculation of a unique rotation matrix between two link joined by any kind of joint. Thirdly, the sensors are easier to calibrate as they consist only of accelerometers. Finally, the sensors allow for calculation of angular velocity and angular acceleration without use of gyroscopes.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Takehiko Ogawa ◽  
Hajime Kanada

In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.


2011 ◽  
Vol 383-390 ◽  
pp. 1318-1325
Author(s):  
Yu Fei Wang ◽  
Jian Jun Yin ◽  
Shan Feng Chen

Motoman SV3X manipulator was used to pick fruit and chosen as research object. Under the instance of known space coordinates of fruit and space position and pose of erect obstacle, a kind of multi-joint angle computation and path planning method for Motoman SV3X was proposed. Firstly, several sets of joint angles were computed according to relative space position between fruit and erect obstacle. And then, one set of joint angle was chosen as terminal angle of path planning. Finally, algorithm was used to plan a obstacle-avoiding path from start angle to terminal angle. The method solved the computation problem of multi-joint angle, and has universality for the problem of avoiding erect obstacle for fruit-picking manipulator. Simulation tests under the environment of Matlab showed that solved joint angles of manipulator can both make Motoman SV3X avoid erect obstacle and end-effector reach preconcerted position with given position error, and validated the correctness of the path planning method.


2014 ◽  
Vol 541-542 ◽  
pp. 1140-1145 ◽  
Author(s):  
Mei Ling Wang ◽  
Min Zhou Luo ◽  
Xin Lin

More and more dual arm robots with redundant manipulator are introduced in industrial fields. Here we focus on this special structure with 7-DOF redundant manipulator, an exhibit analytical and optimal concept was proposed. The formula derivations of inverse kinematics showed that when the redundant joint angle has been obtained, the remaining six joint angles can be derived analytically, and there are eight sets of inverse solution for one giving redundant joint angle. Reversed thinking the joint movement habits, patterns, and frequency of human arm operations, an optimal concept was presented to gain a real time computational efficiency of a direct inverse solution while also achieving the purpose of application.


Author(s):  
Jing-Shan Zhao ◽  
Songtao Wei ◽  
Junjie Ji

This paper investigates the forward and inverse kinematics in screw coordinates for a planar slider-crank linkage. According to the definition of a screw, both the angular velocity of a rigid body and the linear velocity of a point on it are expressed in screw components. Through numerical integration on the velocity solution, we get the displacement. Through numerical differential interpolation of velocity, we gain the acceleration of any joint. Traditionally, position and angular parameters are usually the only variables for establishing the displacement equations of a mechanism. For a series mechanism, the forward kinematics can be expressed explicitly in the variable of position parameters while the inverse kinematics will have to resort to numerical algorithms because of the multiplicity of solution. For a parallel mechanism, the inverse kinematics can be expressed explicitly in the variable of position parameters of the end effector while the forward kinematics will have to resort to numerical algorithms because of the nonlinearity of system. Therefore this will surely lead to second order numerical differential interpolation for the calculation of accelerations. The most prominent merit of this kinematic algorithm is that we only need the first order numerical differential interpolation for computing the acceleration. To calculate the displacement, we also only need the first order numerical integral of the velocity. This benefit stems from the screw the coordinates of which are velocity components. The example of planar four-bar and five-bar slider-crank linkages validate this algorithm. It is especially suited to developing numerical algorithms for forward and inverse velocity, displacement and acceleration of a linkage.


Author(s):  
Cuong Trinh ◽  
Dimiter Zlatanov ◽  
Matteo Zoppi ◽  
Rezia Molfino

The computation of the joint-angle values of a 6R serial manipulator for a given end-effector pose is more difficult for architectures lacking the conventional spherical wrist. Despite this added complexity, such arms have increasingly gained acceptance as they provide better dexterity for a number of tasks. The paper presents a geometric-analysis method for the inverse kinematics of a robot with an offset wrist. The sought postures are shown to correspond to the roots of four separate univariate trigonometric equations for the sixth joint angle. A standard numerical solver is applied to derive all sets of possible real solutions. By back-substitution, all the remaining angular variables are found in succession. Two particular arm designs are considered and full sets of solutions are obtained by the discussed approach. The method is easy to implement and can be applied to various 6R serial robots.


2021 ◽  
pp. 1-15
Author(s):  
Junchen Wang ◽  
Chunheng Lu ◽  
Yinghao Zhang ◽  
Zhen Sun ◽  
Yu Shen

Abstract This paper presents a numerically stable algorithm for analytic inverse kinematics of 7-DoF S-R-S manipulators with joint limit avoidance. The arm angle is used to represent the self-motion manifold within a global arm configuration. The joint limits are analytically mapped to the arm angle space for joint limit avoidance. To profile the relation between the joint angle and arm angle, it is critical to characterize the singular arm angle for each joint. In the-state-of-the art methods, the existence of the singular arm angle is triggered by comparing a discriminant with zero given a threshold. We will show this leads to numerical issues since the threshold is inconsistent among different target poses, leading to incorrect range of the arm angle. These issues are overcome by associating indeterminate joint angles of tangent joints with angles of 0 or pi of cosine joints, rather than using an independent threshold for each joint. The closed-form algorithm in C++ code to perform numerically stable inverse kinematics of 7-DoF S-R-S manipulators with global arm configuration control and joint limit avoidance is also given.


Author(s):  
Yuichi Kobayashi ◽  
◽  
Takahiro Nomura

This paper proposes a method of obstacle avoidance motion generation for a redundant manipulator with a Self-OrganizingMap (SOM) and reinforcement learning. To consider redundancy, two types of SOMs - a hand position map and a joint angle map - are combined. Multiple joint angles corresponding to the same hand position are memorized in the proposed map. Preserved redundant configuration information is used to generate motions based on tasks and situations, while resolving inverse kinematics problems with a redundant manipulator. The proposed map is applied to planning motion control using reinforcement learning in an unknown environment, where collision with obstacles is detected only directly by tactile sensing. The feasibility of the proposed framework was verified by simulation and experiments with an arm robot with force and a vision sensors.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 370 ◽  
Author(s):  
Annik Imogen Gmel ◽  
Thomas Druml ◽  
Rudolf von Niederhäusern ◽  
Tosso Leeb ◽  
Markus Neuditschko

The evaluation of conformation traits is an important part of selection for breeding stallions and mares. Some of these judged conformation traits involve joint angles that are associated with performance, health, and longevity. To improve our understanding of the genetic background of joint angles in horses, we have objectively measured the angles of the poll, elbow, carpal, fetlock (front and hind), hip, stifle, and hock joints based on one photograph of each of the 300 Franches-Montagnes (FM) and 224 Lipizzan (LIP) horses. After quality control, genome-wide association studies (GWASs) for these traits were performed on 495 horses, using 374,070 genome-wide single nucleotide polymorphisms (SNPs) in a mixed-effect model. We identified two significant quantitative trait loci (QTL) for the poll angle on ECA28 (p = 1.36 × 10−7), 50 kb downstream of the ALX1 gene, involved in cranial morphology, and for the elbow joint on ECA29 (p = 1.69 × 10−7), 49 kb downstream of the RSU1 gene, and 75 kb upstream of the PTER gene. Both genes are associated with bone mineral density in humans. Furthermore, we identified other suggestive QTL associated with the stifle joint on ECA8 (p = 3.10 × 10−7); the poll on ECA1 (p = 6.83 × 10−7); the fetlock joint of the hind limb on ECA27 (p = 5.42 × 10−7); and the carpal joint angle on ECA3 (p = 6.24 × 10−7), ECA4 (p = 6.07 × 10−7), and ECA7 (p = 8.83 × 10−7). The application of angular measurements in genetic studies may increase our understanding of the underlying genetic effects of important traits in equine breeding.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


Sign in / Sign up

Export Citation Format

Share Document