Nitrogen and phosphorus uptake and biomass production in four riparian plants grown in subsurface flow constructed wetlands for urban wastewater treatment

2021 ◽  
Vol 280 ◽  
pp. 111806
Author(s):  
Abdeslam Ennabili ◽  
Michel Radoux
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 554
Author(s):  
Darja Istenič ◽  
Gregor Božič

Evapotranspirative willow systems (EWS) are zero-discharge wastewater treatment plants that produce woody biomass and have no discharge to surface or groundwater bodies. The influence of wastewater on the growth of three clones of Salix alba (‘V 093’, ‘V 051’ and ‘V 160’) and the distribution of macronutrients and metals in a pilot EWS receiving primary treated municipal wastewater was studied under a sub-Mediterranean climate. The influent wastewater, shoot number, stem height, and biomass production at coppicing were monitored in two consecutive two-year rotations. Soil properties and the concentrations of macronutrients and metals in soil and woody biomass were analyzed after the first rotation. S. alba clones in EWS produced significantly more woody biomass compared to controls. ‘V 052’ produced the highest biomass yield in both rotations (38–59 t DM ha−1) and had the highest nitrogen and phosphorus uptake (48% and 45%) from wastewater. Nitrogen and phosphorus uptake into the harvestable woody biomass was significantly higher in all clones studied compared to other plant-based wastewater treatment plants, indicating the nutrient recovery potential of EWS. The indigenous white willow clone ‘V 160’ had the lowest biomass yield but absorbed more nutrients from wastewater compared to ‘V 093’. Wastewater composition and load were consistent with the nutrient requirements of the willows; however, an increase in salinity was observed after only two years of operation, which could affect EWS efficiency and nutrient recovery in the long term.


2017 ◽  
Vol 24 (25) ◽  
pp. 20469-20478 ◽  
Author(s):  
Elizandro Oliveira Silveira ◽  
Daiane Moura ◽  
Alexandre Rieger ◽  
Ênio Leandro Machado ◽  
Carlos Alexandre Lutterbeck

2019 ◽  
Vol 372 ◽  
pp. 708-714 ◽  
Author(s):  
S. Cabred ◽  
V. Giunta Ramos ◽  
J.E. Busalmen ◽  
J.P. Busalmen ◽  
S. Bonanni

Water SA ◽  
2018 ◽  
Vol 44 (2 April) ◽  
Author(s):  
W Musazura ◽  
AO Odindo ◽  
EH Tesfamariam ◽  
JC Hughes ◽  
CA Buckley

The Decentralised Wastewater Treatment System (DEWATS) can provide a potential sanitation solution to residents living in informal settlements with the effluent produced being used on agricultural land. This paper reports on a first step to assess the technical viability of this concept. To do so a pilot DEWATS plant was connected to 83 houses in the eThekwini Municipality. An experiment was conducted in a randomised complete block design with 2 treatments (DEWATS effluent irrigation and tap water irrigation + fertiliser) and 3 blocks. Banana and taro crops were irrigated using an automated drip irrigation system. Data on the weather, crop growth, nitrogen and phosphorus uptake and soil chemical properties were collected. Irrigation with DEWATS effluent was comparable to tap water + fertiliser especially for banana growth and biomass production. Banana and taro required 3 514 mm of irrigation effluent. About 0.0117 ha·household−1 (23.3 m2·person−1) was found to be an adequate area for effluent reuse. Wet-weather storage requirements were calculated to be about 9.2 m3·household−1. DEWATS effluent, after passing through a horizontal flow wetland, was unable to meet banana and taro nitrogen and phosphorus requirements. Nutrient monitoring is required when using anaerobic filter effluent from a DEWATS for irrigating banana and taro. 


2021 ◽  
Vol 67 (2) ◽  
pp. 342-354
Author(s):  
Michał Preisner ◽  
Marzena Smol ◽  
Dominika Szołdrowska

AbstractThe intensification of the Baltic Sea eutrophication is associated with the increase of anthropogenic nutrients loads, mainly nitrogen and phosphorus introduced into surface waters from a diffuse, point and natural background sources. Despite the observed decreasing trends in nutrient concentrations in some parts of the Baltic Sea, eutrophication-related indicators continue to deteriorate. This accelerates harmful algal blooms and dissolved oxygen deficits resulting in severe ecosystem disturbance. The paper presents trends, insights and effects of the Urban Wastewater Treatment Directive 91/271/EEC implementation in Poland based on the nutrient riverine loads from Polish territory with particular attention given to the development of municipal wastewater treatment plants under the National Wastewater Treatment Programme 2003–2016. Environmental effects of wastewater infrastructure modernisation are investigated by using available data on the changing nutrient concentrations in the coastal water in 3 basins (Gdansk Basin, Bornholm Basin and Eastern Gotland Basin) belonging to the Polish Exclusive Economic Zone within the Baltic Sea. The results show that the decreasing trend regarding phosphorus loads reduction from municipal effluents was achieved while a stable trend with temporary increases was achieved in terms of nitrogen loads. Moreover, the investigation provides information about the potential bioavailability of discharged effluents before and after the Directive implementation by including total and inorganic forms of nitrogen and phosphorus in the analysis.


Author(s):  
Diederik P.L. Rousseau ◽  
Flor Louage ◽  
Qintong Wang ◽  
Rui Zhang

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1802
Author(s):  
Costanza Baldisserotto ◽  
Sara Demaria ◽  
Ornella Accoto ◽  
Roberta Marchesini ◽  
Marcello Zanella ◽  
...  

Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 757A-757
Author(s):  
Robert F. Polomski* ◽  
Milton D. Taylor ◽  
Stephen J. Klaine ◽  
Ted Whitwell

Commercial nurseries utilize large amounts of water and nutrients during the production cycle of container-grown plants. Excess water contaminated with N and P can impact the quality of surface water and groundwater. Earlier work by the authors found that constructed wetlands are highly efficient for removing N at water temperatures above 15 °C. However, PO4 removal was highly variable with uptake coinciding with periods of active plant growth and net export occurring during all other periods. Ornamental plants that remediate nutrients, especially phosphorus, would be very useful in designing constructed wetlands for commercial nurseries and greenhouses, rain gardens, and homeowner buffer strips. A greenhouse study was initiated in 2003 at Clemson Univ.'s Biosystems Research Complex to screen commercially available ornamental plants for their phytoremediation potential. Among others, these included the woody ornamental plants Cornus amomum, Myrica cerifera `Emperor', and Salix integra `Hakura Nishiki' and the semiaquatic herbaceous ornamental plants Canna `Bengal Tiger' and `King Humbert', Colocasia esculenta `Illustris', Rhynchospora colorata, Iris virginica `Full Eclipse, Pontederia cordata `Singapore Pink', and Thalia geniculata `Red Stem'. Plants were grown in pea gravel media kept saturated with one of five concentrations of Hoagland's Solution. Herbaceous and woody ornamental plants were harvested after 8 and 13 weeks, respectively. Water usage and biomass production were measured and nitrogen and phosphorus uptake was assessed. Experiments were replicated twice for each cultivar. Results indicate several species have the potential to be used in phytoremediation systems.


Sign in / Sign up

Export Citation Format

Share Document