Cross-effect of wetland substrates properties on anammox process in three single-substrate anammox constructed wetlands for treating high nitrogen sewage with low C/N

2022 ◽  
Vol 304 ◽  
pp. 114329
Author(s):  
Jie Li ◽  
Lin Liu ◽  
Xu Huang ◽  
Jie Liao ◽  
Chaoxiang Liu
2018 ◽  
Vol 44 ◽  
pp. 00179 ◽  
Author(s):  
Mariusz Tomaszewski ◽  
Grzegorz Cema ◽  
Tomasz Twardowski ◽  
Aleksandra Ziembińska-Buczyńska

The anaerobic ammonium oxidation (anammox) process is one of the most energy efficient and environmentally-friendly bioprocess for the treatment of the wastewater with high nitrogen concentration. The aim of this work was to study the influence of the high nitrogen loading rate (NLR) on the nitrogen removal in the laboratory-scale anammox sequencing batch reactor (SBR), during the shift from the synthetic wastewater to landfill leachate. In both cases with the increase of NLR from 0.5 to 1.1 – 1.2 kg N/m3d, the nitrogen removal rate (NRR) increases to about 1 kg N/m3d, but higher NLR caused substrates accumulation and affects anammox process efficiency. Maximum specific anammox activity was determined as 0.638 g N/g VSSd (NRR 1.023 kg N/m3d) and 0.594 g N/g VSSd (NRR 1.241 kg N/m3d) during synthetic and real wastewater treatment, respectively. Both values are similar and this is probably the nitrogen removal capacity of the used anammox biomass. This indicates, that landfill leachate did not influence the nitrogen removal capacity of the anammox process.


2013 ◽  
Vol 67 (5) ◽  
pp. 968-975 ◽  
Author(s):  
C. G. Casagrande ◽  
A. Kunz ◽  
M. C. De Prá ◽  
C. R. Bressan ◽  
H. M. Soares

The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH4+ to N2 using nitrite (NO2−) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v−1) fed from 100 to 200 mg L−1 of total N (NO2−-N + NH4+-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L−1 d−1 operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.


2006 ◽  
Vol 53 (12) ◽  
pp. 265-274 ◽  
Author(s):  
A. Dapena-Mora ◽  
J.L. Campos ◽  
A. Mosquera-Corral ◽  
R. Méndez

The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700–1,000 g NH+4-N m−3), organic carbon content (1,000–1,300 g TOC m−3) and salinity up to 8,000–10,000 g NaCl m−3. In the Sharon reactor, approximately 50% of the NH+4-N was oxidised to NO−2-N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m−3· d−1. The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO−2-N concentration was higher than the NH+4-N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340 g NH+4-N m−3 and 440 g NO−2-N m−3, respectively. Based on these results, it seems that the Sharon–Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO−2-N/NH+4-N ratio.


2018 ◽  
Vol 41 (17) ◽  
pp. 2196-2209 ◽  
Author(s):  
Adelaide Almeida ◽  
Krzysztof Jóźwiakowski ◽  
Alina Kowalczyk-Juśko ◽  
Piotr Bugajski ◽  
Karolina Kurek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document