Intestinal bacteria are involved in Radix Glycyrrhizae and Radix Euphorbiae Pekinensis incompatibility

2021 ◽  
pp. 113839
Author(s):  
Siqi Liu ◽  
Shanshan Qiao ◽  
Sha Wang ◽  
Zhi Tao ◽  
Jing Wang ◽  
...  
1955 ◽  
Vol 1 (2) ◽  
pp. 6-13 ◽  
Author(s):  
SACHIKO IINUMA
Keyword(s):  

Author(s):  
L.R. Pace ◽  
C.M. Wells ◽  
R. Awais ◽  
P. Shrestha ◽  
R.D. Parker ◽  
...  
Keyword(s):  

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Małgorzata Makarewicz ◽  
Iwona Drożdż ◽  
Tomasz Tarko ◽  
Aleksandra Duda-Chodak

This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols’ impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole “microbiota” and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 180
Author(s):  
Kouki Shimizu ◽  
Issei Seiki ◽  
Yoshiyuki Goto ◽  
Takeshi Murata

The intestinal pH can greatly influence the stability and absorption of oral drugs. Therefore, knowledge of intestinal pH is necessary to understand the conditions for drug delivery. This has previously been measured in humans and rats. However, information on intestinal pH in mice is insufficient despite these animals being used often in preclinical testing. In this study, 72 female ICR mice housed in SPF (specific pathogen-free) conditions were separated into nine groups to determine the intestinal pH under conditions that might cause pH fluctuations, including high-protein diet, ageing, proton pump inhibitor (PPI) treatment, several antibiotic treatment regimens and germ-free mice. pH was measured in samples collected from the ileum, cecum and colon, and compared to control animals. An electrode, 3 mm in diameter, enabled accurate pH measurements with a small amount of gastrointestinal content. Consequently, the pH values in the cecum and colon were increased by high-protein diet, and the pH in the ileum was decreased by PPI. Drastic alkalization was induced by antibiotics, especially in the cecum and colon. The alkalized pH values in germ-free mice suggested that the reduction in the intestinal bacteria caused by antibiotics led to alkalization. Alkalization of the intestinal pH caused by antibiotic treatment was verified in mice. We need further investigations in clinical settings to check whether the same phenomena occur in patients.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2489
Author(s):  
Ami Yoo ◽  
Mengshi Lin ◽  
Azlin Mustapha

The application of nanoparticles (NPs) for food safety is increasingly being explored. Zinc oxide (ZnO) and silver (Ag) NPs are inorganic chemicals with antimicrobial and bioactive characteristics and have been widely used in the food industry. However, not much is known about the behavior of these NPs upon ingestion and whether they inhibit natural gut microflora. The objective of this study was to investigate the effects of ZnO and Ag NPs on the intestinal bacteria, namely Escherichia coli, Lactobacillus acidophilus, and Bifidobacterium animalis. Cells were inoculated into tryptic soy broth or Lactobacilli MRS broth containing 1% of NP-free solution, 0, 12, 16, 20 mM of ZnO NPs or 0, 1.8, 2.7, 4.6 mM Ag NPs, and incubated at 37 °C for 24 h. The presence and characterization of the NPs on bacterial cells were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Membrane leakage and cell viability were assessed using a UV-visible spectrophotometer and confocal electron microscope, respectively. Numbers of treated cells were within 1 log CFU/mL less than those of the controls for up to 12 h of incubation. Cellular morphological changes were observed, but many cells remained in normal shapes. Only a small amount of internal cellular contents was leaked due to the NP treatments, and more live than dead cells were observed after exposure to the NPs. Based on these results, we conclude that ZnO and Ag NPs have mild inhibitory effects on intestinal bacteria.


Sign in / Sign up

Export Citation Format

Share Document