Using X-ray computed tomography and micro-Raman spectrometry to measure individual particle surface area, volume, and morphology towards investigating atmospheric heterogeneous reactions

2018 ◽  
Vol 69 ◽  
pp. 23-32 ◽  
Author(s):  
Mingjin Wang ◽  
Nan Zheng ◽  
Tong Zhu ◽  
Jing Shang ◽  
Ting Yu ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


Coral Reefs ◽  
2008 ◽  
Vol 27 (4) ◽  
pp. 811-820 ◽  
Author(s):  
C. Laforsch ◽  
E. Christoph ◽  
C. Glaser ◽  
M. Naumann ◽  
C. Wild ◽  
...  

1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

2013 ◽  
Vol 19 (S2) ◽  
pp. 630-631
Author(s):  
P. Mandal ◽  
W.K. Epting ◽  
S. Litster

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 591
Author(s):  
Manasavee Lohvithee ◽  
Wenjuan Sun ◽  
Stephane Chretien ◽  
Manuchehr Soleimani

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross—Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


Sign in / Sign up

Export Citation Format

Share Document