In situ synthesis, physical and mechanical properties of ZrB2–ZrC–WB composites

2019 ◽  
Vol 39 (11) ◽  
pp. 3283-3291
Author(s):  
Shuqi Guo
2021 ◽  
Vol 2131 (4) ◽  
pp. 042013
Author(s):  
A Golyshev ◽  
A Malikov

Abstract The paper presents the analysis of the physical and mechanical properties of the heterogeneous material based on the ceramics TiB, TiB2, TiC, B4C and metal alloy Ti-6Al-4V formed by the SLM method. The effect of ceramic particles TiB, TiB2, TiC, B4C resulting from in situ synthesis under the laser action on the microstructure and hardness of the formed metal-matrix composite has been studied. Under discussion are the main mechanisms of change of the microstructure with secondary ceramic insertions, the hardness is measured at the micro-level.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


2015 ◽  
Vol 1754 ◽  
pp. 19-24
Author(s):  
A. Alipour Skandani ◽  
R. Ctvrtlik ◽  
M. Al-Haik

ABSTRACTMaterials with different allotropes can undergo one or more phase transformations based on the changes in the thermodynamic states. Each phase is stable in a certain temperature/pressure range and can possess different physical and mechanical properties compared to the other phases. The majority of material characterizations have been carried out for materials under equilibrium conditions where the material is stabilized in a certain phase and a lesser portion is devoted for onset of transformation. Alternatively, in situ measurements can be utilized to characterize materials while undergoing phase transformation. However, most of the in situ methods are aimed at measuring the physical properties such as dielectric constant, thermal/electrical conductivity and optical properties. Changes in material dimensions associated with phase transformation, makes direct measurement of the mechanical properties very challenging if not impossible. In this study a novel non-isothermal nanoindentation technique is introduced to directly measure the mechanical properties such as stiffness and creep compliance of a material at the phase transformation point. Single crystal ferroelectric triglycine sulfate (TGS) was synthetized and tested with this method using a temperature controlled nanoindentation instrument. The results reveal that the material, at the transformation point, exhibits structural instabilities such as negative stiffness and negative creep compliance which is in agreement with the findings of published works on the composites with ferroelectric inclusions.


2015 ◽  
Vol 3 (15) ◽  
pp. 8205-8214 ◽  
Author(s):  
Jia Wei ◽  
Shuo Zhang ◽  
Xiaoyun Liu ◽  
Jun Qian ◽  
Jiasong Hua ◽  
...  

BaTiO3/MWNT/PBO ternary composites with excellent microwave absorption properties, mechanical properties and thermostabilities.


2007 ◽  
Vol 330-332 ◽  
pp. 349-352
Author(s):  
Xiao Yan Lin ◽  
Xu Dong Li ◽  
Xing Dong Zhang

Hydroxyapatite/collagen composites were prepared in-situ synthesis. The composites were finally achieved by dehydration including air-drying and freeze-drying methods. FTIR, XPS and DSC were employed to investigate the composites dehydrated by two methods. The air-dried composites had better mechanical properties than those of the composites dried by freeze drying. Air-drying of the composite induced more bond formation and crosslink between collagen fibers and HA crystals compared with freeze-drying of the composite, as indicated by the shifting of amide A and I bands to the lower wavenumber and by the changes in the binding energy of O1s, Ca2p, and P2p, leading to the increase of the peak temperature of the composites. Collagen crosslink and bond formation in the air-dried composites were key factors to increase the bending strength of the composites. The results of this study confirm that in situ synthesis and air-dry method are effective ways to obtain nanoHA/COL composites with high mechanical properties.


2018 ◽  
Vol 731 ◽  
pp. 813-821 ◽  
Author(s):  
Chaochao Ye ◽  
Xinyan Yue ◽  
Hui Zong ◽  
Guangfu Liao ◽  
Hongqiang Ru

2016 ◽  
Vol 110 ◽  
pp. 182-191 ◽  
Author(s):  
Lei Yu ◽  
Limei Pan ◽  
Jian Yang ◽  
Yongbao Feng ◽  
Jingxian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document