scholarly journals Incidence of single-drug resistant, multidrug-resistant and extensively drug-resistant Escherichia coli urinary tract infections: An Australian laboratory-based retrospective study

2019 ◽  
Vol 16 ◽  
pp. 254-259 ◽  
Author(s):  
Oyebola Fasugba ◽  
Anindita Das ◽  
George Mnatzaganian ◽  
Brett G. Mitchell ◽  
Peter Collignon ◽  
...  
2005 ◽  
Vol 134 (2) ◽  
pp. 425-431 ◽  
Author(s):  
A. R. MANGES ◽  
P. NATARAJAN ◽  
O. D. SOLBERG ◽  
P. S. DIETRICH ◽  
L. W. RILEY

A multidrug-resistant clonal group (CgA) of Escherichia coli was shown to cause half of all trimethoprim–sulphamethoxazole (TMP–SMZ)-resistant urinary tract infections (UTIs) in a college community between October 1999 and January 2000. This second study was conducted to determine the fate of CgA. Urine E. coli isolates from women with UTI, collected between October 2000 and January 2001, were tested for antibiotic susceptibility, O serogroup, ERIC2 PCR and DNA macrorestriction patterns using pulsed-field gel electrophoresis. The proportion of UTIs caused by CgA declined by 38% (P<0·001) but the prevalence of resistance to TMP–SMZ did not change. Six additional clonal groups were identified and these were responsible for 32% of TMP–SMZ-resistant UTIs. The temporal decline in the proportion of UTIs caused by CgA provides evidence that CgA caused a community outbreak of UTI. The fluctuation and occurrence of other E. coli clonal groups in this community suggest that a proportion of community-acquired UTIs may be caused by E. coli disseminated from one or more point sources.


2022 ◽  
Vol 5 (1) ◽  
pp. e2137277
Author(s):  
Jesús Sojo-Dorado ◽  
Inmaculada López-Hernández ◽  
Clara Rosso-Fernandez ◽  
Isabel M. Morales ◽  
Zaira R. Palacios-Baena ◽  
...  

2014 ◽  
Vol 59 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Karen O'Dwyer ◽  
Aaron T. Spivak ◽  
Karen Ingraham ◽  
Sharon Min ◽  
David J. Holmes ◽  
...  

ABSTRACTGSK2251052, a novel leucyl-tRNA synthetase (LeuRS) inhibitor, was in development for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. In a phase II study (study LRS114688) evaluating the efficacy of GSK2251052 in complicated urinary tract infections, resistance developed very rapidly in 3 of 14 subjects enrolled, with ≥32-fold increases in the GSK2251052 MIC of the infecting pathogen being detected. A fourth subject did not exhibit the development of resistance in the baseline pathogen but posttherapy did present with a different pathogen resistant to GSK2251052. Whole-genome DNA sequencing ofEscherichia coliisolates collected longitudinally from two study LRS114688 subjects confirmed that GSK2251052 resistance was due to specific mutations, selected on the first day of therapy, in the LeuRS editing domain. Phylogenetic analysis strongly suggested that resistantEscherichia coliisolates resulted from clonal expansion of baseline susceptible strains. This resistance development likely resulted from the confluence of multiple factors, of which only some can be assessed preclinically. Our study shows the challenges of developing antibiotics and the importance of clinical studies to evaluate their effect on disease pathogenesis. (These studies have been registered at ClinicalTrials.gov under registration no. NCT01381549 for the study of complicated urinary tract infections and registration no. NCT01381562 for the study of complicated intra-abdominal infections.)


2021 ◽  
Vol 8 (9) ◽  
pp. 396-407
Author(s):  
Sheriff Wakil ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapa

Multidrug resistance among Escherichia coli causing urinary tract infections (UTIs) and diarrhea are major public health problem worldwide which cause difficulty in treating the infections caused by Escherichia coli due to the high resistances. The study is aimed to determine the phenotypic and molecular detection of multidrug resistant E. coli isolated from clinical samples of patients attending selected Hospitals in Damaturu, Yobe State-Nigeria. Methods: Two hundred (200) clinical samples were collected aseptically from patient diagnosed with (100 stool samples) and UTI’s (100 urine samples) using sterile universal container. The samples were processed using standard microbiological methods for identification of E. coli. Samples were cultured on MacConkey agar (stool) and Cystine lactose electrolyte deficient agar (urine). The resulting colonies of isolates were further subculture on Eosin methylene blue agar for confirmatory and followed by gram stain, biochemical identification at Microbiology laboratory unit of Yobe State Specialist and Yobe State Teaching Hospital respectively. The antimicrobial susceptibility patterns were determined using Kirby-Bauer disc diffusion techniques and the phenotypic expression of extended spectrum beta-lactamases (ESBLs) were determined using modified double disc synergy test (MDDST) and also the three (3) resistance genes (blaTEM, accC1 and qnrA) were detected using polymerase chain reaction. Results: One hundred and twenty-two (122) isolates were resistant to antibiotics. The highest level of resistance was against amoxicillin (90.2%) while the least resistance was against sparfloxacin (24.3%). Thirty-seven (37) E. coli isolates shows MDR; the highest MDR was (24.3%) while least MDR was (5.4%). The PCR amplification of resistant genes (blaTEM, accC1 and qnrA) were detected on E. coli that shows positive ESBL and the bands were separated using agarose gel electrophoresis. Conclusion: The findings of this study show augmentin, ciprofloxacin and sparfloxacin are the most effective antibiotics against E. coli isolated from patients attending the two hospitals in Damaturu; who are diagnose with UTI and diarrheic infection. The resistant genes include; blaTEM, accC1 and qnrA coding for beta-lactam, aminoglycoside and quinolones were present in E. coli isolated from patients attending selected Hospitals in Yobe State, Nigeria. Keywords: Multidrug resistant, Escherichia coli, extended spectrum beta lactamase, resistance-associated genes, urinary tract infections, diarrheic.


Author(s):  
Samirah . ◽  
Darwati . ◽  
Windarwati . ◽  
Hardjoeno .

The bacterial and sensitivity pattern towards antimicrobials on urinary tract infections (UTI) patients are very important to beknown by clinicians to get a successful treatment. The bacterial and sensitivity pattern towards antimicrobials will be changed in differentplace and time, so that those should be analyzed routinely. To evaluate the bacterial and antimicrobials resistance pattern on urinarytract infections patients. A retrospective study on 220 urinary samples in January until December 2004 at Clinical Microbiology subunit of Dr.Wahidin Sudirohusodo hospital . Of 99 samples of UTI, Prevalence of UTI in woman (54.5%) were higher than man (45.5%).Most of sample (28 samples) were found in 0 to 15 years group. The most bacteries in urine were Escherichia coli (39.4%) and Klebsiella(26.3%). Amikacin was sensitive to all bacteries, while amoxicilin and ampicilin were resistance. Prevalence of UTI in women werehigher than in men. Incidens of UTI was highest in children group. The most bacteries in urine samples were Escherichia coli. Amikacinwas sensitive to all bacteries, while Amoxicilin and Ampicilin were resistance.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 0986
Author(s):  
Al-Hasnawy Et al.

Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.


Sign in / Sign up

Export Citation Format

Share Document