scholarly journals The first report on genome sequence of high-level ciprofloxacin-resistant Salmonella enterica serovar Indiana ST17 in Korean livestock

Author(s):  
Dong Chan Moon ◽  
Kim Mi Hyun ◽  
Hee Young Kang ◽  
HyeonJung Park ◽  
Soon-Seek Yoon ◽  
...  
Gut Pathogens ◽  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Uelze ◽  
Maria Borowiak ◽  
Carlus Deneke ◽  
Cécile Jacobs ◽  
István Szabó ◽  
...  

Abstract Background The Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) (SASd) has been found to be host-adapted to sheep, with a high prevalence in sheep herds worldwide. Infections are usually sub-clinical, however the serovar has the potential to cause diarrhea, abortions and chronic proliferative rhinitis. Although occurrence and significance of SASd infections in sheep have been extensively studied, the genetic mechanism underlying this unusual host-adaptation have remained unknown, due to a lack of (a) available high-quality genome sequence(s). Results We utilized Nanopore and Illumina sequencing technologies to generate a de novo assembly of the 4.88-Mbp complete genome sequence of the SASd strain 16-SA00356, isolated from the organs of a deceased sheep in 2016. We annotated and analyzed the genome sequence with the aim to gain a deeper understanding of the genome characteristics associated with its pathogenicity and host adaptation to sheep. Overall, we found a number of interesting genomic features such as several prophage regions, a VirB4/D4 plasmid and novel genomic islands. By comparing the genome of 16-SA00356 to other S. enterica serovars we found that SASd features an increased number of pseudogenes as well as a high level of genomic rearrangements, both known indicators of host-adaptation. Conclusions With this sequence, we provide the first complete and closed genome sequence of a SASd strain. With this study, we provide an important basis for an understanding of the genetic mechanism that underlie pathogenicity and host adaptation of SASd to sheep.


Proceedings ◽  
2020 ◽  
Vol 76 (1) ◽  
pp. 2
Author(s):  
Alexey V. Rakov ◽  
Anatoly A. Yakovlev ◽  
Viacheslav V. Sinkov

Salmonella enterica subsp. enterica serovar Enteritidis is one of the most common zoonotic pathogens. We report here the genome sequence of Salmonella enterica subsp. enterica serovar Enteritidis S-25048 isolated from chicken (Gallus gallus domesticus) meat in Artyom, Russia. The assembled genome size was 4,695,145 bp. A total of 4565 coding genes, four rRNAs, 62 tRNAs, and 14 noncoding RNAs were predicted. To our knowledge, this is the first publically deposited annotated genome of this serovar isolated in Russia. The Salmonella Enteritidis S-25048 genome is suitable for use as a reference strain of Salmonella Enteritidis isolated in Russia.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Rubina Paradiso ◽  
Serena Lombardi ◽  
Maria Grazia Iodice ◽  
Marita Georgia Riccardi ◽  
Massimiliano Orsini ◽  
...  

The bacteriophage 100268_sal2 was isolated from water buffalo feces in southern Italy, exhibiting lytic activity against several subspecies of Salmonella enterica . This bacteriophage belongs to the Siphoviridae family and has a 125,114-bp double-stranded DNA (ds-DNA) genome containing 188 coding sequences (CDSs).


2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2005 ◽  
Vol 54 (10) ◽  
pp. 999-1000 ◽  
Author(s):  
K Renuka ◽  
Seema Sood ◽  
Bimal K Das ◽  
Arti Kapil

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Arghya Mukherjee ◽  
Bobby Chettri ◽  
James S. Langpoklakpam ◽  
Arvind K. Singh ◽  
Dhrubajyoti Chattopadhyay

Here, we report the 2.6 Mb draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from oil-contaminated soil in Guwahati, India. CNV2 contains 2,545 coding sequences and has a G+C content of 33.2%. This is the first report of the genome sequence of an S. saprophyticus adapted to an oil-contaminated environment.


2002 ◽  
Vol 46 (5) ◽  
pp. 1604-1606 ◽  
Author(s):  
Cheng-Hsun Chiu ◽  
Chishih Chu ◽  
Lin-Hui Su ◽  
Wan-Yu Wu ◽  
Tsu-Lan Wu

ABSTRACT A Salmonella enterica serovar Typhimurium strain that harbored a plasmid carrying a TEM-1-type β-lactamase gene was isolated from the blood and cerebrospinal fluid of an infant with meningitis. This 3.2-kb plasmid was further characterized to be a nonconjugative pGEM series cloning vector containing a foreign insert. The strain was likely laboratory derived and contaminated the environment before it caused the infection.


Sign in / Sign up

Export Citation Format

Share Document