Diet and trophic ecology of introduced salmonines at two south shore ports of Lake Superior, 2019

Author(s):  
Benjamin R. Vasquez ◽  
John A. Whitinger ◽  
Shawn P. Sitar ◽  
Troy G. Zorn ◽  
Brandon S. Gerig
1997 ◽  
Vol 34 (4) ◽  
pp. 549-561 ◽  
Author(s):  
Robert E. Zartman ◽  
Suzanne W. Nicholson ◽  
William F. Cannon ◽  
G. B. Morey

New single-crystal zircon U–Th–Pb ages for plutonic and rhyolitic Keweenawan Supergroup rocks from the south shore of Lake Superior provide geochronological constraints on magmatic evolution associated with the 1.1 Ga Midcontinent rift. Analyses of a granophyric phase of the Mineral Lake intrusion and the Mellen granite, both parts of the Mellen Intrusive Complex, and a laterally extensive rhyolite from the top of the Kallander Creek Volcanics have weighted average 207Pb/206Pb ages of 1102.0 ± 2.8 Ma (N = 2), 1100.9 ± 1.4 Ma (N = 5), and 1098.8 ± 1.9 Ma (N = 4), respectively. Analyses of a pyroclastic rhyolite flow at the top of the Porcupine Volcanics result in variable 207Pb/206Pb ages that range from 1080 to 1137 Ma. This rhyolite exhibits a continuum between morphologically complex and simpler prismatic zircon crystals, the latter yielding concordant analyses having a weighted average 207Pb/206Pb age of 1093.6 ± 1.8 Ma (N = 2). Four prismatic zircons from an aphyric rhyolite of the Chengwatana Volcanics in the Ashland syncline form a linear array intersecting concordia at 1094.6 ± 2.1 Ma (MSWD = 1.3). Another presumed Chengwatana rhyolite recovered from drill core intersecting the Hudson–Afton horst in southeast Minnesota yielded only ~20 morphologically indistinguishable zircons. Six analyses give 207Pb/206Pb ages ranging from 1112 to 1136 Ma, including one analysis with a virtually concordant age of 1130 Ma. This age, however, is considerably older than that obtained for the Chengwatana Volcanics in the Ashland syncline or any other precisely dated rock from the Midcontinent rift.


1990 ◽  
Vol 47 (2) ◽  
pp. 290-300 ◽  
Author(s):  
R. Stottlemyer ◽  
D. Toczydlowski

Precipitation, snowpack, snowmelt, and streamwater samples were collected in a small gauged watershed draining into Lake Superior during winter 1987–88 to assess the importance of snowmelt pattern and meltwater pathways in the occurrence of solute pulses in streamwater. The snowpack along the south shore of Lake Superior can contain 50% of annual precipitation inputs and 38% of annual ionic inputs including moderate levels of strong acids. Throughout winter, thawed surface soils and small but steady snowpack moisture release promoted movement of snowpack solutes to surface mineral soils. Preferential elution of K+, NH4+, and H+ from the snowpack occurred with the initial thaw. Most ions exhibited pulses in snowmelt. Transport of snowpack solutes to the stream during snowmelt was through near-surface soil macropores and overland flow. For those ions with concentrations higher in the snowpack than in the premelt streamwater, K+, NH4+, and H+, the earliest snowmelt pulses had the greatest influence on streamwater chemistry. Unlike other portions of the region with resistant bedrock, the widespread presence of alkaline glacial till provides excess stream acid neutralization capacity (ANC) to buffer acidic inputs. Peak winter streamwater ANC reduction was caused principally by spring melt dilution of base cations and associated alkalinity, constant high SO42− levels, and an increase in NO3−. The maximum reduction in stream ANC was concurrent with overland flow. Relative to its snowmelt concentration, NO3− was highest in streamwater with some stream input likely the result of nitrification and N mineralization.


Author(s):  
James P. Leary

This chapter examines the accordion culture along the south shore of Lake Superior. From the late nineteenth century through the present, the accordion has reigned in the area as the most ubiquitous and emblematic folk-musical instrument. A downright working-class instrument, it fostered egalitarian social relations and interethnic alliances—a kind of alliance only possible in the New World, where the politics of ethnic identity has come to govern many social relations. The chapter focuses in the following: (1) how South Shore musicians acquired and learned to play assorted accordions; (2) the audiences for whom and contexts within which they performed; and (3) the sources and nature of their repertoires. The resulting cumulative historical and ethnographic portrait illuminates the accordion's significant role in establishing a common, creolized, regional, and enduring working-class culture that was substantially formed between the 1890s and the 1930s.


Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Sign in / Sign up

Export Citation Format

Share Document