A study on flammability limits of fuel mixtures

2008 ◽  
Vol 155 (3) ◽  
pp. 440-448 ◽  
Author(s):  
Shigeo Kondo ◽  
Kenji Takizawa ◽  
Akifumi Takahashi ◽  
Kazuaki Tokuhashi ◽  
Akira Sekiya
2020 ◽  
Vol 142 ◽  
pp. 45-55
Author(s):  
Andrés Z. Mendiburu ◽  
Christian R. Coronado ◽  
João A. de Carvalho

1989 ◽  
Vol 111 (2) ◽  
pp. 100-103
Author(s):  
I. Wierzba ◽  
G. A. Karim

The behavior of the lean and rich flammability limits of various fuel mixture combinations involving propane, n-butane, propylene and ethylene, which feature prominently in a variety of industrial and natural fuel gases such as liquefied petroleum gases (LPGs), was examined. It was found that the lean limits of such mixtures can be predicted well by using Le Chatelier’s Rule. This rule can also predict the rich flammability limits of propane-n-butane mixtures. However, its application to calculate the rich limits of mixtures such as propane-propylene, propane-ethylene, butane-ethylene, propylene-ethylene mixtures carries a significant error with certain mixtures composition. The effect of the dilution of such fuel mixtures with nitrogen or carbon dioxide was also investigated and a predictive procedure is described.


Author(s):  
Daniel Jaimes ◽  
Vincent McDonell ◽  
Scott Samuelsen

Elevated pressure and temperature conditions are widely encountered during gas turbine operation. To avoid unexpected ignition and explosion of mixtures of fuel and air under these conditions, it is imperative to identify the flammability limits of relevant fuel mixtures. Common fuels include process gases such as natural gas, coke oven gas and IGCC syngas fuel. The flammability limits of pure fuels and common gas/air mixtures have been widely reported, however a significant lack of flammability data for fuel mixtures relevant for use in gas turbines as well as data at elevated pressure and temperature conditions is available. The objective of this study is to characterize the flammability limits of fuel/air mixtures and their dependence on initial temperature and pressure. Experimental studies of lean flammability limits (LFLs) for methane, hydrogen, and carbon monoxide, in addition to mixtures of these gases (i.e. CH4/H2, H2/CO, and CH4/CO2) were performed at temperatures up to 200 °C and pressures up to 9 bar. ASTM Standard E918 (1983) provided the framework for tests using a one-liter pressure-rated test cylinder in which the fuel-air mixtures were prepared and then ignited. Flammability is determined using a 7% and 5% pressure rise criterion per the ASTM E918 and European EN 1839 standards, respectively. The LFLs for each gas and gas mixture are found to decrease linearly with increasing temperature for the temperature range tested. The LFLs of hydrogen and mixtures containing hydrogen are observed to increase with an increase in the initial pressure, whereas the LFLs of all other mixtures exhibit a negligible dependence on pressure. For mixtures, predicted LFL values obtained using Le Chatelier’s mixing rule (LC) are fairly consistent with the experimentally determined values near ambient conditions, however it is not recommended for use at elevated pressure and/or temperature. Finally, the experimental data presented in this study are compared with previous experimental studies, flammability limits calculated using numerical methods, and past studies of predicted LFL values for similar fuel/air mixtures. The purpose for characterizing the flammability limits for these gaseous mixtures is to extend the results to developing appropriate procedures for the safe industrial use of renewable gases, such as bio-derived methane, biogas composed mainly of methane and carbon dioxide, and renewably derived syngas which contains large quantities of hydrogen and carbon monoxide gas.


2020 ◽  
Vol 64 ◽  
pp. 104074 ◽  
Author(s):  
Shijing Shen ◽  
Xianke Ji ◽  
Yong Pan ◽  
Ronghua Qi ◽  
Juncheng Jiang

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5173
Author(s):  
Junrong Ma ◽  
Changsuo Zhang

The prevention and evaluation of explosions requires suitable standards of measurement. As such, for this study two ignition thresholds, the ignition temperature and the minimum ignition irradiance were selected as the assessment criteria. These ignition threshold values were experimentally determined by heating stationary inert silicon carbide particles via thermal radiation with a large spot size in order to ignite quiescent methane-air fuel mixtures. A high-speed Schlieren camera was used to capture the progression of the formation and propagation of the flames throughout the experiments. The results of the experiments show that the irradiance and temperature threshold are directly and inversely proportional to the particle size, respectively. Furthermore, the irradiance and temperature thresholds have similar tendencies within the flammability limits; wherein, the minimum value corresponds to fuel mixtures at a stoichiometric ratio, and increases as the equivalence ratio shifts toward the flammability limits. Irradiance thresholds, though, are more sensitive to changes in equivalence ratio than temperature. The temperature histories of the heated particle determined that when the irradiance is lower than its ignition threshold value, the heated particle-fuel mixture system will arrive at a thermal equilibrium, rather than ignition, due to the inability of the particle to reach the ignition temperature. This study also found that longer ignition times will result in a more drastic deformation of the flame fronts caused by natural convection.


Author(s):  
Jonathan Hogan Webb

The design of a free piston compressor and an analysis on integrating an external combustion engine into the compressor design are presented in this article. A free piston compressor is a device which converts chemical energy to work on a volume of air through the kinetic energy of an inertia driven piston, which is not rigidly attached to a ground. An external combustion engine serves as in intermediate chamber which transfers combustion gases to a device to perform some work. The following discusses the design and experiments on an external combustion engine, with a focus on eliminating an injection holding force on a free piston compressor’s elastomeric membranes. The efficiency of the external combustion engine to transfer energy without significant losses due to heat, dead volume, air/fuel mixtures, and actuated valve speed are also presented.


Sign in / Sign up

Export Citation Format

Share Document