Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

2009 ◽  
Vol 172 (2-3) ◽  
pp. 1551-1559 ◽  
Author(s):  
Carmen S.D. Rodrigues ◽  
Luis M. Madeira ◽  
Rui A.R. Boaventura
2005 ◽  
Vol 51 (1) ◽  
pp. 167-174 ◽  
Author(s):  
J. Beltran de Heredia ◽  
J. Torregrosa ◽  
J.R. Dominguez ◽  
E. Partido

The degradation of wine distillery wastewaters by aerobic biological treatment has been investigated in a batch reactor. The evolution of the chemical oxygen demand, biomass and total contents of polyphenolic and aromatic compounds was followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constant is evaluated. The final effluents of the aerobic biological experiments were oxidized by Fenton's reagent. The evolution of chemical oxygen demand, hydrogen peroxide concentration and total contents of polyphenolic and aromatic compounds was followed through each experiment. A kinetic model to interpret the experimental data is proposed. The kinetic rate constant of the global reaction is determined.


2008 ◽  
Vol 43 (8) ◽  
pp. 952-960 ◽  
Author(s):  
Nicolas Rodriguez ◽  
Henrik K. Hansen ◽  
Patricio Nuñez ◽  
Jaime Guzman

2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


1994 ◽  
Vol 30 (6) ◽  
pp. 237-246 ◽  
Author(s):  
A. Carucci ◽  
M. Majone ◽  
R. Ramadori ◽  
S. Rossetti

This paper describes a lab-scale experimentation carried out to study enhanced biological phosphate removal (EBPR) in a sequencing batch reactor (SBR). The synthetic feed used was based on peptone and glucose as organic substrate to simulate the readily biodegradable fraction of a municipal wastewater (Wentzel et al., 1991). The experimental work was divided into two runs, each characterized by different operating conditions. The phosphorus removal efficiency was considerably higher in the absence of competition for organic substrate between P-accumulating and denitrifying bacteria. The activated sludge consisted mainly of peculiar microorganisms recently described by Cech and Hartman (1990) and called “G bacteria”. The results obtained seem to be inconsistent with the general assumption that the G bacteria are characterized by anaerobic substrate uptake not connected with any polyphosphate metabolism. Supplementary anaerobic batch tests utilizing glucose, peptone and acetate as organic substrates show that the role of acetate in the biochemical mechanisms promoting EBPR may not be so essential as it has been assumed till now.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2049-2052 ◽  
Author(s):  
G. Buitrón ◽  
A. Koefoed ◽  
B. Capdeville

The microbial activity during the aerobic acclimation of activated sludge to phenol was studied. Carbon dioxide evolution rate (CER), measured in a sequencing batch reactor coupled to an infra-red system, was utilized as the activity control parameter. It was found that CER is representative of the microbial metabolism. Moreover, it was observed that starvation periods during acclimation had a negative effect on biodegradation rate.


Sign in / Sign up

Export Citation Format

Share Document