Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton's reagent

2005 ◽  
Vol 51 (1) ◽  
pp. 167-174 ◽  
Author(s):  
J. Beltran de Heredia ◽  
J. Torregrosa ◽  
J.R. Dominguez ◽  
E. Partido

The degradation of wine distillery wastewaters by aerobic biological treatment has been investigated in a batch reactor. The evolution of the chemical oxygen demand, biomass and total contents of polyphenolic and aromatic compounds was followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constant is evaluated. The final effluents of the aerobic biological experiments were oxidized by Fenton's reagent. The evolution of chemical oxygen demand, hydrogen peroxide concentration and total contents of polyphenolic and aromatic compounds was followed through each experiment. A kinetic model to interpret the experimental data is proposed. The kinetic rate constant of the global reaction is determined.

Author(s):  
Juan Garcia ◽  
Jesus Beltran-Heredia

AbstractIn this work olive oil mill wastewater has been treated as first step by means of a Fenton’s reagent process and later by an ozonation treatment, in batch reactors in both cases. In the Fenton’s reagent oxidation step, a reduction of 33% and 90% is obtained for chemical oxygen demand and total polyphenolic compounds, respectively. In the ozonation step, ozone partial pressure and temperature were varied leading to chemical oxygen demand removal in the range 5 - 17% and total polyphenolic compounds removal in the range 26 - 62%. A kinetic study, which consideres mixed flow reactor model for both phases, allows to determine the rate constant for the ozone reaction in the reduction of chemical oxygen demand and total polyphenolic compounds. Kinetic rate constants were correlated with temperature to Arrhenius equations.


2009 ◽  
Vol 60 (4) ◽  
pp. 1089-1095 ◽  
Author(s):  
Marco S. Lucas ◽  
Maria Mouta ◽  
António Pirra ◽  
José A. Peres

The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H2O2/COD) used was equal to 2.5, maintaining constant the molar ratio H2O2/Fe2 + =15.


2001 ◽  
Vol 44 (5) ◽  
pp. 103-108 ◽  
Author(s):  
J. Beltrán-Heredia ◽  
J. Torregrosa ◽  
J. García ◽  
J.R. Dominguez ◽  
J.C. Tierno

Degradation of olive mill wastewater (OMW) by means of two chemical oxidation processes (Fenton's reagent and ozonation) and their consecutive treatments with aerobic microorganisms have been studied. Fenton's reagent treatment moderately reduces COD and to a greater extent the polyphenolic compounds. Ozonation contributed to low conversion of COD and moderate reduction of polyphenols. The aerobic biological treatments degrade to values higher than 70% and 90% for COD and polyphenolic compounds, respectively. A kinetic study has been carried out in each process, determining the representative kinetic parameters of each model.


2011 ◽  
Vol 11 (3) ◽  
pp. 253-257 ◽  
Author(s):  
Winarti Andayani ◽  
Agustin N M Bagyo

Degradation of humic acid in aqueous solution containing TiO2 coated on ceramics beads under irradiation of 254 nm UV light has been conducted in batch reactor. The aim of this experiment was to study photocatalytic degradation of humic acid in peat water. The irradiation of the humic acid in aqueous solution was conducted in various conditions i.e solely uv, in the presence of TiO2-slurry and TiO2 beads. The color intensity, humic acid residue, conductivity and COD (chemical oxygen demand) of the solution were analyzed before and after irradiation.  The compounds produced during photodegradation were identified using HPLC. The results showed that after photocatalytic degradation, the color intensity and the COD value of the solution decreased, while the conductivity of water increased indicating mineralization of the peat water occurred. In addition, oxalic acid as the product of degradation was observed.


2017 ◽  
Vol 77 (1) ◽  
pp. 204-210 ◽  
Author(s):  
Hongying Yuan ◽  
Yuping Yang ◽  
Jian Yuan ◽  
Yanning Wang ◽  
Yameng Song ◽  
...  

Abstract The dewaterability of excess sludge significantly improved upon pretreatment with Fenton's reagent in this study. After 0.9 g/L of Fe2+ and 5.0 g/L of H2O2 were added to the sludge, and reacted for 2 h at pH = 4, the specific resistance to filtration (SRF) of the excess sludge decreased from an initial value of 29.74 × 1012 m/kg to 6.49 × 1012 m/kg. The factors that affected this improvement in sludge dewaterability as evaluated by SRF reduction showed the following order: H2O2 > pH > Fe2+ > reaction time. Furthermore, the hydrolysis performance of the sludge under the optimal reaction conditions was investigated. The results indicated that the concentration of soluble chemical oxygen demand in the supernatant increased almost 14 times compared to raw sludge, and the contents of soluble protein and soluble polysaccharide were more than 8 and 17 times higher, respectively, than for the untreated situation. However, the amounts of ammonia nitrogen (NH4+-N) and phosphate (PO43−-P) released from the sludge showed different trends: NH4+-N increased by 200%, while PO43−-P decreased by 82%. The production of volatile fatty acids (VFAs) from the treated sludge showed that total VFAs increased by 66%, and iso-butylacetic acid was the dominant product among the total VFAs.


2012 ◽  
Vol 66 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Mouhamed el khames Saad ◽  
Younes Moussaoui ◽  
Asma Zaghbani ◽  
Imen Mosrati ◽  
Elimame Elaloui ◽  
...  

The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.


Sign in / Sign up

Export Citation Format

Share Document