Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution

2013 ◽  
Vol 244-245 ◽  
pp. 528-536 ◽  
Author(s):  
Gulay Bayramoglu ◽  
Aydin Akbulut ◽  
M. Yakup Arica
2020 ◽  
Vol 314 ◽  
pp. 113641 ◽  
Author(s):  
Kezhuo Zhang ◽  
Qian Wang ◽  
Yaqian Zhou ◽  
Jiajun Gao ◽  
Chunxi Li ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Liubov Skrypnik ◽  
Anastasia Novikova

The factors affecting the efficiency of micelle-mediated extraction of phenolic compounds from apple pomace was investigated. Higher extraction efficiency by using as a solvent an aqueous solution of Tween 80 in comparison to Triton X-100, Span 20, Tween 20, 70% ethanol, and water was shown. Four independent variables (Tween 80 concentration, time, solvent-to material ratio, and pH) to enhance the recovery of polyphenols from apple pomace was investigated. Applying response surface methodology, the second order polynomial regression equation showing dependence of the yield of polyphenols on the extraction parameters was derived. The adjusted regression coefficient (R2 = 98.73%) and the lack-of-fit test (p > 0.05) showed a good accuracy of the developed model. The difference between observed and predicted values was no more than 3%. The optimal extraction conditions were found to be Tween 80 concentration of 1.14%, time of 65 min, solvent-to-material ratio of 104 mL g−1, pH of 3.8. Under optimal conditions the predicted total phenolic compounds content was 7.75 mg g−1. The obtained apple pomace extracts were characterized in terms of their antioxidant activity. The proposed extraction technology by using Tween 80 aqueous solution as a solvent allows obtaining the extracts with high content of polyphenols which are suitable for the applications in food, cosmetic, and pharmaceutical products requiring a surfactant to stabilize them.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 201-205 ◽  
Author(s):  
C. Brasquet ◽  
E. Subrenat ◽  
P. Le Cloirec

Granular activated carbon (GAC) is easily used in water or wastewater treatment in order to remove organic micropollutants. Recently, a new presentation of activated carbon has been developed: fibrous activated carbon in the form of cloth or felt. This work investigates the adsorption onto activated carbon cloths (ACC) of various phenolic compounds from aqueous solution. Experiments were carried out in batch reactors with two ACCs (called CS 1501 and RS 1301) and their performances were compared with those of GAC. Initial adsorption kinetic coefficients were higher with fibers than with granules due to the direct connection of micropores to the external surface of fibers. Adsorption isotherms were also performed and modelized by Langmuir and Freundlich equations. Adsorption capacities were similar or higher with ACCs than with GAC. The behaviour of the ACC CS 1501 was also studied in a dynamic reactor. The breakthrough curves allowed the determination of high maximum adsorption capacities, 117 mg.g−1 for phenol. Pressure drops in ACC beds were measured and the influence of various parameters was shown: the activation step, the number of fabric layers, the space between two layers.


2010 ◽  
Vol 160-162 ◽  
pp. 163-170
Author(s):  
Hong Zheng ◽  
Yang Wang ◽  
Peng Liang ◽  
Hong Bin Qi

The ability of Cr-bentonite prepared using synthetic wastewater containing chromium was investigated for adsorptive removal of 4-aminophenol and 4-chlorophenol from aqueous solution in a batch system at 25 °C. The physic-chemical parameters including pH value of solution and contact time were studied. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of sorption. The equilibrium sorption data for 4-aminophenol and 4-chlorophenol were well fitted to Langmuir adsorption isotherm and the monolayer sorption capacity was found to be 26.53 and 23.81 mg/g at 25 °C, respectively. The sorption energy calculated from Dubinin-Redushkevich (D-R) isotherm are 8.31 and 8.20 kJ/mol for the uptake of 4-aminophenol and 4-chlorophenol respectively which indicates that both the sorption processes are chemical in nature. The kinetic data were analyzed using pseudo-first order, pseudo-second order kinetic equation and intraparticle diffusion model. The experimental data fit very well the pseudo-second order kinetic model. Intraparticle diffusion affects 4-aminophenol and 4-chlorophenol uptake. Sorption studies carried out using industrial wastewater samples containing phenolic compounds show that there is significant potential for Cr-bentonite as an adsorbent material for phenollic compounds removal from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document