Porous media transport of iron nanoparticles for site remediation application: A review of lab scale column study, transport modelling and field-scale application

2021 ◽  
Vol 403 ◽  
pp. 123443
Author(s):  
Abhisek Mondal ◽  
Brajesh Kumar Dubey ◽  
Meenakshi Arora ◽  
Kathryn Mumford
2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


2005 ◽  
Vol 71 (1) ◽  
Author(s):  
E. A. Borisova ◽  
P. M. Adler
Keyword(s):  

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 226 ◽  
Author(s):  
Jenna Poonoosamy ◽  
Sabina Haber-Pohlmeier ◽  
Hang Deng ◽  
Guido Deissmann ◽  
Martina Klinkenberg ◽  
...  

The understanding of the dissolution and precipitation of minerals and its impact on the transport of fluids in porous media is essential for various subsurface applications, including shale gas production using hydraulic fracturing (“fracking”), CO2 sequestration, or geothermal energy extraction. In this work, we conducted a flow through column experiment to investigate the effect of barite precipitation following the dissolution of celestine and consequential permeability changes. These processes were assessed by a combination of 3D non-invasive magnetic resonance imaging, scanning electron microscopy, and conventional permeability measurements. The formation of barite overgrowths on the surface of celestine manifested in a reduced transverse relaxation time due to its higher magnetic susceptibility compared to the original celestine. Two empirical nuclear magnetic resonance (NMR) porosity–permeability relations could successfully predict the observed changes in permeability by the change in the transverse relaxation times and porosity. Based on the observation that the advancement of the reaction front follows the square root of time, and micro-continuum reactive transport modelling of the solid/fluid interface, it can be inferred that the mineral overgrowth is porous and allows the diffusion of solutes, thus affecting the mineral reactivity in the system. Our current investigation indicates that the porosity of the newly formed precipitate and consequently its diffusion properties depend on the supersaturation in solution that prevails during precipitation.


Sign in / Sign up

Export Citation Format

Share Document