Variation in surface water–groundwater exchange with land use in an urban stream

2010 ◽  
Vol 392 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Robert J. Ryan ◽  
Claire Welty ◽  
Philip C. Larson
2017 ◽  
Vol 25 (8) ◽  
pp. 7688-7698 ◽  
Author(s):  
Zhidan Wen ◽  
Xiaoli Huang ◽  
Dawen Gao ◽  
Ge Liu ◽  
Chong Fang ◽  
...  

2013 ◽  
Vol 68 (12) ◽  
pp. 2632-2637 ◽  
Author(s):  
A. M. Aucour ◽  
T. Bariac ◽  
P. Breil ◽  
P. Namour ◽  
L. Schmitt ◽  
...  

Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ18O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ18O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20–30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.


2021 ◽  
Author(s):  
Stefan Krause ◽  

<p>It is probably hard to overestimate the significance of the River Ganges for its spiritual, cultural and religious importance. As the worlds’ most populated river basin and a major water resource for the 400 million people inhabiting its catchment, the Ganges represents one of the most complex and stressed river systems globally. This makes the understanding and management of its water quality an act of humanitarian and geopolitical relevance. Water quality along the Ganges is critically impacted by multiple stressors, including agricultural, industrial and domestic pollution inputs, a lack and failure of water and sanitation infrastructure, increasing water demands in areas of intense population growth and migration, as well as the severe implications of land use and climate change. Some aspects of water pollution are readily visualised as the river network evolves, whilst others contribute to an invisible water crisis (Worldbank, 2019) that affects the life and health of hundreds of millions of people.</p><p>We report the findings of a large collaborative study to monitor the evolution of water pollution along the 2500 km length of the Ganges river and its major tributaries that was carried out over a six-week period in Nov/Dec 2019 by three teams of more than 30 international researchers from 10 institutions. Surface water and sediment were sampled from more than 80 locations along the river and analysed for organic contaminants, nutrients, metals, pathogen indicators, microbial activity and diversity as well as microplastics, integrating in-situ fluorescence and UV absorbance optical sensor technologies with laboratory sample preparation and analyses. Water and sediment samples were analysed to identify the co-existence of pollution hotspots, quantify their spatial footprint and identify potential source areas, dilution, connectivity and thus, derive understanding of the interactions between proximal and distal of sources solute and particulate pollutants.</p><p>Our results reveal the co-existence of distinct pollution hotspots for several contaminants that can be linked to population density and land use in the proximity of sampling sites as well as the contributing catchment area. While some pollution hotspots were characterised by increased concentrations of most contaminant groups, several hotspots of specific pollutants (e.g., microplastics) were identified that could be linked to specific cultural and religious activities. Interestingly, the downstream footprint of specific pollution hotspots from contamination sources along the main stem of the Ganges or through major tributaries varied between contaminants, with generally no significant downstream accumulation emerging in water pollution levels, bearing significant implications for the spatial reach and legacy of pollution hotspots. Furthermore, the comparison of the downstream evolution of multi-pollution profiles between surface water and sediment samples support interpretations of the role of in-stream fate and transport processes in comparison to patterns of pollution source zone activations across the channel. In reporting the development of this multi-dimensional pollution dataset, we intend to stimulate a discussion on the usefulness of large river network surveys to better understand the relative contributions, footprints and impacts of variable pollution sources and how this information can be used for integrated approaches in water resources and pollution management.</p>


2015 ◽  
Vol 19 (6) ◽  
pp. 2663-2672 ◽  
Author(s):  
A.-M. Kurth ◽  
C. Weber ◽  
M. Schirmer

Abstract. In this study, we investigated whether river restoration was successful in re-establishing groundwater–surface water interactions in a degraded urban stream. Restoration measures included morphological changes to the river bed, such as the installation of gravel islands and spur dykes, as well as the planting of site-specific riparian vegetation. Standard distributed temperature sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater–surface water interactions in two reference streams and an experimental reach of an urban stream before and after its restoration. Radon-222 analyses were utilized to validate the losing stream conditions of the urban stream in the experimental reach. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater–surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater–surface water interactions. With the methods presented in this publication, it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.


2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Tineke H. Jones ◽  
Julie Brassard ◽  
Edward Topp ◽  
Graham Wilkes ◽  
David R. Lapen

ABSTRACT From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml−1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml−1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.


2014 ◽  
Vol 38 (2) ◽  
pp. 656-668 ◽  
Author(s):  
Karina Hacke Ribeiro ◽  
Nerilde Favaretto ◽  
Jeferson Dieckow ◽  
Luiz Cláudio de Paula Souza ◽  
Jean Paolo Gomes Minella ◽  
...  

Water degradation is strongly related to agricultural activity. The aim of this study was to evaluate the influence of land use and some environmental components on surface water quality in the Campestre catchment, located in Colombo, state of Parana, Brazil. Physical and chemical attributes were analyzed (total nitrogen, ammonium, nitrate, total phosphorus, electrical conductivity, pH, temperature, turbidity, total solids, biological oxygen demand, chemical oxygen demand and dissolved oxygen). Monthly samples of the river water were taken over one year at eight monitoring sites, distributed over three sub-basins. Overall, water quality was worse in the sub-basin with a higher percentage of agriculture, and was also affected by a lower percentage of native forest and permanent preservation area, and a larger drainage area. Water quality was also negatively affected by the presence of agriculture in the riparian zone. In the summer season, probably due to higher rainfall and intensive soil use, a higher concentration of total nitrogen and particulate nitrogen was observed, as well as higher electrical conductivity, pH and turbidity. All attributes, except for total phosphorus, were in compliance with Brazilian Conama Resolution Nº 357/2005 for freshwater class 1. However, it should be noted that these results referred to the base flow and did not represent a discharge condition since most of the water samples were not collected at or near the rainfall event.


Author(s):  
Bishwajit Roy ◽  
Tiago Capela Lourenço ◽  
Filipe Lisboa ◽  
Gil Penha-Lopes ◽  
Filipe Duarte Santos

Sign in / Sign up

Export Citation Format

Share Document