Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions

2014 ◽  
Vol 513 ◽  
pp. 314-321 ◽  
Author(s):  
Lei Yang ◽  
Liding Chen ◽  
Wei Wei ◽  
Yang Yu ◽  
Handan Zhang
2020 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
Qunou Jiang ◽  
Yunqi Wang ◽  
...  

Abstract. Desertification in semi-arid regions is currently a global environmental and societal problem. This research attempts to understand whether a 40-year-old rain-feed Artamisia sphaerocephala Krasch sand-fixing land in Three North Shelterbelt Program (3NSP) of China can be developed sustainably or not, using a newly designed lysimeter to monitor the precipitation-induced deep soil recharge (DSR) at 220 cm depth. Evapotranspiration is calculated through a water balance equation when precipitation and soil moisture data are collected. Comparison of soil particle sizes and soil moisture distributions in artificial sand-fixing land and neighboring bare land is made to assess the impact of sand-fixing reforestation. Results show that such a sand-fixing reforestation results in a root system being mainly developed in the horizontal direction and the changed soil particle distribution. Specifically, the sandy soil with 50.53 % medium sand has been transformed into a sandy soil with 68.53 % fine sand. Within the Artamisia sphaerocephala Krasch sand-fixing experimental area, the DSR values in bare sand plot and Artemisia sphaerocephala Krasch plot are respectively 283.6 mm and 90.6 mm in wet years, reflecting a difference of more than three times. The deep soil layer moisture in semi-arid sandy land is largely replenished by precipitation-induced infiltration. The DSR values of bare sandy land plot and Artemisia sphaerocephala Krasch plot are respectively 51.6 mm and 2 mm in dry years, a difference of more than 25 times. The proportions of DSR reduced by Artemisia sphaerocephala Krasch is 68.06 % and 96.12 % in wet and dry years, respectively. This research shows that Artamisia sphaerocephala Krasch in semi-arid region can continue to grow and has the capacity of fixing sand. It consumes a large amount of precipitated water, and reduces the amount of DSR considerably.


2020 ◽  
Vol 24 (12) ◽  
pp. 5875-5890
Author(s):  
Yiben Cheng ◽  
Xinle Li ◽  
Yunqi Wang ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
...  

Abstract. Desertification in semi-arid regions is currently a global environmental and societal problem. This research attempts to understand whether a 40-year-old rain-fed Artemisia sphaerocephala Krasch sand-fixing land as part of the Three North Shelterbelt Program (3NSP) of China can be developed sustainably or not using a newly designed lysimeter to monitor the precipitation-induced deep soil recharge (DSR) at 220 cm of depth. Evapotranspiration is calculated through a water balance equation when precipitation and soil moisture data are collected. A comparison of soil particle sizes and soil moisture distributions in artificial sand-fixing land and neighboring bare land is made to assess the impact of sand-fixing reforestation. Results show that such a sand-fixing reforestation results in a root system being mainly developed in the horizontal direction and a changed soil particle distribution. Specifically, the sandy soil with 50.53 % medium sand has been transformed into a sandy soil with 68.53 % fine sand. Within the Artemisia sphaerocephala Krasch sand-fixing experimental area, the DSR values in the bare sand plot and Artemisia sphaerocephala Krasch plot are respectively 283.6 and 90.6 mm in wet years, reflecting a difference of more than 3 times. The deep soil layer moisture in semi-arid sandy land is largely replenished by precipitation-induced infiltration. The DSR values of the bare sandy land plot and Artemisia sphaerocephala Krasch plot are respectively 51.6 and 2 mm in dry years, a difference of more than 25 times. The proportions of DSR reduced by Artemisia sphaerocephala Krasch are 68.06 % and 96.12 % in wet and dry years, respectively. This research shows that Artemisia sphaerocephala Krasch in semi-arid regions can continue to grow and has the capacity to fix sand. It consumes a large amount of precipitated water and reduces the amount of DSR considerably.


Author(s):  
Wenwu ZHAO ◽  
Xuening FANG ◽  
Stefani DARYANTO ◽  
Xiao ZHANG ◽  
Yaping WANG

ABSTRACTSoil moisture is a key issue for eco-hydrological research in arid and semi-arid regions, and is primarily concerned with water availability for vegetation. Shallow and deep soil moisture occurs according to the maximum infiltration depth. Soil moisture has three-dimensional characteristics: inter-layer variability, horizontal heterogeneity and temporal variability. Soil moisture is affected by various factors including terrain, soil characteristics, climate and vegetation, and the effects of these change with time (e.g., rainfall patterns) and space (e.g., soil depth). In arid and semi-arid regions, deep soil moisture is of particular importance to vegetation restoration and the evaluation of vegetation sustainability; however, accurate prediction of the spatial distribution of deep soil moisture in the Loess Plateau of China still faces numerous challenges. Therefore, future research should focus on the mechanisms, models and scale effects of soil moisture, particularly for deep soil moisture.


2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2018 ◽  
Vol 19 (3) ◽  
pp. 1179-1189 ◽  
Author(s):  
Bowei Yu ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Chong Huang ◽  
He Li ◽  
...  

2017 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
Hongzhong Dang ◽  
Wei Li

Abstract. Deep soil recharge (DSR) (at depth more than 200 cm) is an important part of water circulation in arid and semi-arid regions. Quantitative monitoring of DSR is of great importance to assess water resources and study water balance in arid and semi-arid regions. Simple estimates of recharge based on fixed fractions of annual precipitation are misleading because they do not reflect the plant and soil factors controlling recharge. This study used a typical bare land on the Eastern margin of Mu Us Sandy Land of China an example to illustrate a new lysimeter method of measuring DSR underneath bare sand land in arid and semi-arid regions. Positioning monitoring was done on precipitation and DSR measurement underneath mobile sand dunes from 2013 to 2015 in the study area. Results showed that use of a constant recharge coefficient for estimating DSR in bare sand land in arid and semi-arid regions is questionable and could lead to considerable errors. It appeared that DSR in those regions was influenced by precipitation pattern, and was closely correlated with spontaneous heavy precipitation (defined for an event with more than 10 mm precipitation) other than the average precipitation strength. This study showed that as much as 42 % of precipitation in a single heavy precipitation event can be transformed into DSR. During the observation period, the maximum annual DSR could make up to 24.33 % of the annual precipitation. This study provided a reliable method of estimating DSR in sandy area of arid and semi-arid regions, which is valuable for managing groundwater resources and ecological restoration in those regions.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


2020 ◽  
Vol 20 (4) ◽  
pp. 2123-2132
Author(s):  
Limei Wang ◽  
Aisheng Ma ◽  
Hong Zhang ◽  
Jianguo Zhang ◽  
Qiang Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document