scholarly journals High-frequency monitoring reveals seasonal and event-scale water quality variation in a temporally frozen river

2018 ◽  
Vol 564 ◽  
pp. 619-639 ◽  
Author(s):  
M. Kämäri ◽  
S. Tattari ◽  
E. Lotsari ◽  
J. Koskiaho ◽  
C.E.M. Lloyd
2020 ◽  
Author(s):  
Liang Yu ◽  
Joachim C. Rozemeijer ◽  
Hans Peter Broers ◽  
Boris M. van Breukelen ◽  
Jack J. Middelburg ◽  
...  

Abstract. Eutrophication of water bodies has been a problem causing severe degradation of water quality in cities. To gain mechanistic understanding of the temporal dynamics of nitrogen and phosphorus in a groundwater fed low-lying urban polder, we applied high frequency monitoring in Geuzenveld, a polder in the city of Amsterdam. The high frequency monitoring equipment was installed at the pumping station where water leaves the polder. From 2016 March to 2017 June, total phosphorus (TP), ammonium (NH4), turbidity, electrical conductivity (EC), and water temperature were measured at intervals smaller than 20 minutes. This paper discusses the results at three time scales: annual scale, rain event scale, and single pumping event scale. Mixing of upwelling groundwater and runoff was the dominant hydrological process and governed the temporal pattern of the EC, while N and P fluxes from the polder were also significantly regulated by primary production and iron transformations. The mixing of groundwater and runoff water governed water quality through variation of the intensity and duration of the events. For NH4, the dominant form of N in surface water originating from groundwater seepage, we observed low concentrations during the algae growing season, while concentrations were governed by mixing of groundwater and precipitation inputs in the late autumn and winter. The depletion of dissolved NH4 in spring suggests uptake by primary producers, consistent with high chlorophyll-a, O2, and suspended solids during this period. Total P and turbidity were high during winter, due to the release of reduced iron and P from anoxic sediment to the water column. Rapid Fe2+ oxidation in the water column is the major cause of turbidity. In the other seasons, P is retained in the sediment by iron oxides. Nitrogen is exported from the polder to the downstream water bodies throughout the whole year, mostly in the form of NH4, but as organic N in spring. P leaves the polder mainly during winter, primarily associated with Fe(OH)3 colloids and as dissolved P. Based on this new understanding of the dynamics of N and P in this low lying urban catchment, it is possible to formulate management strategies that can effectively control and reduce eutrophication situation in urban polders and receiving downstream waters.


2021 ◽  
Author(s):  
Akinori Ozaki ◽  
Panitan Kaewjantawee ◽  
Nguyen Van Thinh ◽  
Masaru Matsumoto ◽  
Masayoshi Harada ◽  
...  

2013 ◽  
Vol 31 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Hyo-Jeong Song ◽  
◽  
Kyung-Sub Hwang ◽  
Jong-Hwan Park ◽  
Hak-Young Lee ◽  
...  

2016 ◽  
Vol 20 (5) ◽  
pp. 1851-1868 ◽  
Author(s):  
Bas van der Grift ◽  
Hans Peter Broers ◽  
Wilbert Berendrecht ◽  
Joachim Rozemeijer ◽  
Leonard Osté ◽  
...  

Abstract. Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze–thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling relative to the operating hours of the pumping station should be accounted for when calculating P export loads, determining trends in water quality, or when judging water quality status of polder water systems.


2019 ◽  
Vol 104 ◽  
pp. 13-23 ◽  
Author(s):  
Paula El Najjar ◽  
Amine Kassouf ◽  
Anne Probst ◽  
Jean-Luc Probst ◽  
Naim Ouaini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document