scholarly journals LB729 A Parthenolide-Depleted Feverfew Extract Reverses Genetic and Epigenetic Changes induced by Particulate Matter Demonstrating Pleiotropic Mechanisms of Action Behind its Anti-Inflammatory Benefits and Protection Against Pollution

2021 ◽  
Vol 141 (9) ◽  
pp. B7
Author(s):  
W. Li ◽  
A. Yang ◽  
F. Liu-Walsh ◽  
R. Parsa
Diagnosis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Massimo Franchini ◽  
Claudia Glingani ◽  
Giancarlo Maria Liumbruno

Abstract The COVID-19 pandemic will be remembered as one of the worst catastrophic events in human history. Unfortunately, no universally recognized effective therapeutic agents are currently available for the treatment of severe SARS-CoV-2 infection. In this context, the use of convalescent plasma from recovered COVID-19 patients has gained increasing interest thanks to the initially positive clinical reports. A number of mechanisms of action have been proposed for convalescent plasma, including direct neutralization and suppression of viremia, anti-inflammatory and immunomodulation effects and mitigation of the COVID-19-associated hypercoagulable state. These immune and non-immune mechanisms will be critically discussed in this narrative review.


2021 ◽  
Vol 19 (3) ◽  
pp. 355-363
Author(s):  
Jung-Wook Kang ◽  
In-Chul Lee

Purpose: This study aimed to investigate the effects of the Cassia obtusifolia L. seed extract (CSE) on particulate matter (PM)-induced skin.Methods: The effects of CSE on cell viability were evaluated using a skin cell line. To determine the anti-inflammatory effects and matrix metallopeptidase-1 (MMP-1)-inhibitory effects of CSE on PM-induced skin, NO and MMP-1 expressions were measured using an enzyme-linked immunosorbent assay (ELISA) kit. Also, the effects of CSE was investigated the induction of IL-8 and TNF-α treated PM on reconstructed human full thickness skin models.Results: It was observed that CSE decreased NO production in PM-induced RAW 264.7 cells without cytotoxicity. In addition, CSE decreased the expression of MMP-1 in PM-induced cells in a dose-dependent manner. CSE decreased IL-8 and TNF-α production in a PM-reconstructed human skin model.Conclusion: These results indicate that CSE could be used as a cosmetic material to induce anti-inflammation and inhibition of MMP-1 in PM-induced skin.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 28
Author(s):  
D. P. Nagahawatta ◽  
Hyun-Soo Kim ◽  
Young-Heun Jee ◽  
Thilina U. Jayawardena ◽  
Ginnae Ahn ◽  
...  

Sargassum horneri is an invasive brown seaweed that grows along the shallow coastal areas of the Korean peninsula, which are potentially harmful to fisheries and natural habitats in the areas where it is accumulated. Therefore, the author attempted to evaluate the anti-inflammatory mechanism of Sargachromenol isolated from S. horneri against particulate matter (PM)-stimulated RAW 264.7 macrophages. PM is a potent inducer of respiratory diseases such as lung dysfunctions and cancers. In the present study, the anti-inflammatory properties of Sargachromenol were validated using enzyme-linked immunosorbent assay (ELISA), Western blots, and RT-qPCR experiments. According to the results, Sargachromenol significantly downregulated the PM-induced proinflammatory cytokines, Prostaglandin E2 (PGE2), and Nitric Oxide (NO) secretion via blocking downstream activation of Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and MAPKs phosphorylation. Thus, Sargachromenol is a potential candidate for innovation in various fields including pharmaceuticals, cosmeceuticals, and functional food.


Author(s):  
Waldiceu A. Verri ◽  
Fabiana T.M.C. Vicentini ◽  
Marcela M. Baracat ◽  
Sandra R. Georgetti ◽  
Renato D.R. Cardoso ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Vanessa Mba Matah Marte ◽  
Gilbert Ateufack ◽  
Marius Mbiantcha ◽  
Albert Donatien Atsamo ◽  
Carine Flore Adjouzem ◽  
...  

Distemonanthus benthamianus (Caesalpiniaceae) is a plant from the Cameroon pharmacopoeia very widely used in the treatment of many pathologies among which are gastrointestinal disorders. The main purpose of this study was to assess the healing properties of gastric ulcer from the methanolic extract of Distemonanthus benthamianus and its mechanisms of action. The healing properties of gastric ulcers (chronic ulcer model induced by ethanol and indomethacin) were evaluated in vivo in adult male rats, while the mechanisms of action were evaluated in vitro by anti-inflammatory assay (protein denaturation, cyclooxygenase, and lipoxygenase assays) and immunomodulatory assay (ROS production (using technical chemiluminescence), cytokine (TNF-α, IL-1β, IL-6) production (using ELISA), proliferation of T cells (using liquid scintillation counter), and cytotoxicity (using MTT assay)). The methanolic extract of Distemonanthus benthamianus inhibited protein denaturation (75.63%) and the activities of cyclooxygenase (78.92%) and 5-lipoxygenase (81.54%). The extract also significantly ( p < 0.001 ) inhibited intracellular and extracellular ROS production and T cell proliferation and reduced significantly ( p < 0.01 , p < 0.001 ) TNF-α, IL-1β, IL-6, and PGE2 production. At all doses (125, 250, and 500 mg/kg), the extract significantly reduces the ulceration index and the area of ulceration and significantly increases the mass of gastric mucus. In addition, the extract significantly decreases the level of MDA, significantly increases the activities of catalase and glutathione, and then improves the hematological parameters in sick animals. Histological micrographs show that in the presence of the extract, there is advanced reepithelialization with recovery of the ulcerated epithelium. Thus, the extract of Distemonanthus benthamianus has healing properties against gastric ulcers which are associated with its anti-inflammatory, immunomodulatory, and antioxidant effects.


2019 ◽  
Vol 317 (6) ◽  
pp. E1121-E1130 ◽  
Author(s):  
Aneseh Adeshirlarijaney ◽  
Jun Zou ◽  
Hao Q. Tran ◽  
Benoit Chassaing ◽  
Andrew T. Gewirtz

Metformin beneficially impacts several aspects of metabolic syndrome including dysglycemia, obesity, and liver dysfunction, thus making it a widely used frontline treatment for early-stage type 2 diabetes, which is associated with these disorders. Several mechanisms of action for metformin have been proposed, including that it acts as an anti-inflammatory agent, possibly as a result of its impact on intestinal microbiota. In accord with this possibility, we observed herein that, in mice with diet-induced metabolic syndrome, metformin impacts the gut microbiota by preventing its encroachment upon the host, a feature of metabolic syndrome in mice and humans. However, the ability of metformin to beneficially impact metabolic syndrome in mice was not markedly altered by reduction or elimination of gut microbiota, achieved by the use of antibiotics or germfree mice. Although reducing or eliminating microbiota by itself suppressed diet-induced dysglycemia, other features of metabolic syndrome including obesity, hepatic steatosis, and low-grade inflammation remained suppressed by metformin in the presence or absence of gut microbiota. These results support a role for anti-inflammatory activity of metformin, irrespective of gut microbiota, in driving some of the beneficial impacts of this drug on metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document