Potential mechanisms of action of convalescent plasma in COVID-19

Diagnosis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Massimo Franchini ◽  
Claudia Glingani ◽  
Giancarlo Maria Liumbruno

Abstract The COVID-19 pandemic will be remembered as one of the worst catastrophic events in human history. Unfortunately, no universally recognized effective therapeutic agents are currently available for the treatment of severe SARS-CoV-2 infection. In this context, the use of convalescent plasma from recovered COVID-19 patients has gained increasing interest thanks to the initially positive clinical reports. A number of mechanisms of action have been proposed for convalescent plasma, including direct neutralization and suppression of viremia, anti-inflammatory and immunomodulation effects and mitigation of the COVID-19-associated hypercoagulable state. These immune and non-immune mechanisms will be critically discussed in this narrative review.

2020 ◽  
Vol 24 (4) ◽  
pp. 9-20
Author(s):  
Ya. F. Zverev ◽  
A. Ya. Rykunova

The review is devoted to the consideration of the most common drugs currently used in the treatment of primary nephrotic syndrome. Mechanisms of pharmacological activity of glucocorticosteroids, ACTH, calcineurin inhibitors cyclosporine A and tacrolimus, alkylating compounds cyclophosphamide and chlorambucil, mycophenolate mofetil, levamisole, abatacept, rituximab and a number of other recently created monoclonal antibodies. An attempt is made to separate the immune and non-immune mechanisms of action of the most common drugs, concerning both the impact on the immunogenetics of the noted diseases and the direct impact on the podocytes that provide permeability of the glomerular filtration barrier and the development of proteinuria. It is shown that the immune mechanisms of corticosteroids are caused by interaction with glucocorticoid receptors of lymphocytes, and nonimmune – with stimulation of the same receptors in podocytes. It was found that the activation of adrenocorticotropic hormone melanocortin receptors contributes to the beneficial effect of the drug in nephrotic syndrome. It is discussed that the immune mechanism of calcineurin inhibitors is provided by the suppression of tissue and humoral immunity, and the non-immune mechanism is largely due to the preservation of the activity of podocyte proteins such as synaptopodin and cofilin. Evidence is presented to show that the beneficial effect of rituximab in glomerulopathies is related to the interaction of the drug with the protein SMPDL-3b in lymphocytes and podocytes. The mechanisms of action of mycophenolate mofetil, inhibiting the activity of the enzyme inosine 5-monophosphate dehydrogenase, which causes the suppression of the synthesis of guanosine nucleotides in both lymphocytes and glomerular mesangium cells, are considered. It is emphasized that the effect of levamisole in nephrotic syndrome is probably associated with the normalization of the ratio of cytokines produced by various T-helpers, as well as with an increase in the expression and activity of glucocorticoid receptors. The mechanisms of pharmacological activity of a number of monoclonal antibodies, as well as galactose, the beneficial effect of which may be provided by binding to the supposed permeability factor produced by lymphocytes, are considered.


2020 ◽  
Vol 27 (6) ◽  
pp. 955-982 ◽  
Author(s):  
Kyoung Sang Cho ◽  
Jang Ho Lee ◽  
Jeiwon Cho ◽  
Guang-Ho Cha ◽  
Gyun Jee Song

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.


2015 ◽  
Vol 15 (23) ◽  
pp. 2456-2463 ◽  
Author(s):  
Marilena Antunes-Ricardo ◽  
Janet Gutierrez-Uribe ◽  
Sergio Serna-Saldivar

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Hosakatte Niranjana Murthy ◽  
Guggalada Govardhana Yadav ◽  
Yaser Hassan Dewir ◽  
Abdullah Ibrahim

Many underutilized tree species are good sources of food, fodder and possible therapeutic agents. Balanites aegyptiaca (L.) Delile belongs to the Zygophyllaceae family and is popularly known as “desert date”, reflecting its edible fruits. This tree grows naturally in Africa, the Middle East and the Indian subcontinent. Local inhabitants use fruits, leaves, roots, stem and root bark of the species for the treatment of various ailments. Several research studies demonstrate that extracts and phytochemicals isolated from desert date display antioxidant, anticancer, antidiabetic, anti-inflammatory, antimicrobial, hepatoprotective and molluscicidal activities. Mesocarp of fruits, seeds, leaves, stem and root bark are rich sources of saponins. These tissues are also rich in phenolic acids, flavonoids, coumarins, alkaloids and polysterols. Some constituents show antioxidant, anticancer and antidiabetic properties. The objective of this review is to summarize studies on diverse bioactive compounds and the beneficial properties of B. aegyptiaca.


2021 ◽  
Author(s):  
Narges Navaei‐Alipour ◽  
Mohadeseh Mastali ◽  
Gordon A. Ferns ◽  
Maryam Saberi‐Karimian ◽  
Majid Ghayour‐Mobarhan

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 984
Author(s):  
Rima El-Dirany ◽  
Hawraa Shahrour ◽  
Zeinab Dirany ◽  
Fadi Abdel-Sater ◽  
Gustavo Gonzalez-Gaitano ◽  
...  

Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Omolola R. Oyenihi ◽  
Ayodeji B. Oyenihi ◽  
Anne A. Adeyanju ◽  
Oluwafemi O. Oguntibeju

Despite recent advances in the understanding and management ofdiabetes mellitus, the prevalence of the disease is increasing unabatedly with resulting disabling and life-reducing consequences to the global human population. The limitations and side effects associated with current antidiabetic therapies have necessitated the search for novel therapeutic agents. Due to the multipathogenicity ofdiabetes mellitus,plant-derived compounds with proven multiple pharmacological actions have been postulated to “hold the key” in the search for an affordable, efficacious, and safer therapeutic agent in the treatment of the disease and associated complications. Resveratrol, a phytoalexin present in few plant species, has demonstrated beneficial antidiabetic effects in animals and humans through diverse mechanisms and multiple molecular targets. However, despite the enthusiasm and widespread successes achieved with the use of resveratrol in animal models ofdiabetes mellitus, there are extremely limited clinical data to confirm the antidiabetic qualities of resveratrol. This review presents an update on the mechanisms of action and protection of resveratrol indiabetes mellitus, highlights challenges in its clinical utility, and suggests the way forward in translating the promising preclinical data to a possible antidiabetic drug in the near future.


Sign in / Sign up

Export Citation Format

Share Document