The effect of chemical surface treatment on the fracture toughness of microfibrillated cellulose reinforced epoxy composites

2017 ◽  
Vol 45 ◽  
pp. 301-306 ◽  
Author(s):  
Jun-Seok Yeo ◽  
Oh Young Kim ◽  
Seok-Ho Hwang
2010 ◽  
Vol 150-151 ◽  
pp. 1171-1175 ◽  
Author(s):  
Zulkifli R. ◽  
Che Husna Azhari

The aim of the project is to study the effect of silane concentrations on the interlaminar fracture toughness, GIC of silk/epoxy composites. Woven silk fibre has been treated with five different silane concentrations and fabricated into a panel with two layers of silk fibre. The processing technique used to prepare the sample is by a vacuum bag in an autoclave. Six sets of panels were fabricated based on different 3-aminopropyl triethoxysilane silane concentrations which include one sets of specimens without treatment for comparison. Mode I test based on double cantilever beam specimens (DCB) method has been used over all the specimens. The results of the GIC were plotted and compared with the untreated composites panel. GIC of the composite has been found to increase when the silane concentrations exceeded certain minimum silane contents of 15 ml. During the test, crack propagation is stable and no fibre bridging occurred between both sides of fracture surfaces. All the failure that occurred were at the fibre-matrix interface. The GIC of woven silk/epoxy composites can be enhanced by surface treatment using coupling agent. Surface treatment has affected the properties of the composite panel by increasing the interlaminar fracture toughness by a maximum of 53% at a 5.8vol% silane concentrations.


2006 ◽  
Vol 312 ◽  
pp. 167-172
Author(s):  
Yan Li ◽  
Yiu Wing Mai ◽  
Lin Ye

In this paper, double cantilever beam (DCB) and end notch flexural (ENF) tests were performed to study mode I and mode II interlaminar fracture toughness of sisal textile reinforced epoxy composites. Two kinds of fiber surface treatment methods were used to improve the interfacial bonding properties between sisal fiber and the epoxy resin. Effect of fiber surface treatments on mode I and mode II fracture toughness was analyzed with the aid of microobservation and single fiber pull-out test. It was concluded that proper fiber surface treatment could improve the fracture properties of this kind of Eco-composite.


Alloy Digest ◽  
1971 ◽  
Vol 20 (12) ◽  

Abstract UNITEMP N-155 is an iron-base austenitic alloy used over a wide temperature range from subzero to about 1800 or 1900 F. It has relatively good oxidation and corrosion resistance. It is used in such applications as turbine rotors, shafts and blades, afterburner parts, nozzles and combustion chambers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance as well as forming, heat treating, joining, and surface treatment. Filing Code: Fe-48. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1963 ◽  
Vol 12 (6) ◽  

Abstract DURANICKEL Alloy 301 is a wrought, age-hardenable nickel alloy having high strength, high corrosion and heat resistance. It is recommended for springs, diaphrams, bearings, pump and valve parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-83. Producer or source: The International Nickel Company Inc..


Alloy Digest ◽  
1963 ◽  
Vol 12 (2) ◽  

Abstract MONEL alloy R-405 is a machining grade of nickel-copper alloy that combines toughness, strength and corrosion resistance of MONEL alloy 400 with excellent machinability. The alloy is designed especially for use in automatic screw machines. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-79. Producer or source: Huntington Alloy Products Division.


Alloy Digest ◽  
1974 ◽  
Vol 23 (3) ◽  

Abstract ALMANITE W comprises a series of three types of austenitic-martensitic white irons characterized by high hardness and relatively good impact strength. Type W1 has a pearlitic matrix. Type W2 has a martensitic matrix, Type W4 is highly alloyed to provide an austenitic matrix in the as-cast condition which may be further modified to give a martensitic matrix by heat treatment or by refrigeration. This datasheet provides information on composition, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-42. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1973 ◽  
Vol 22 (2) ◽  

Abstract MEEHANITE GF-20 is a gray cast iron designed principally for high machinability and is used where strength is not an important factor. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: CI-39. Producer or source: Meehanite Metal Corporation.


Sign in / Sign up

Export Citation Format

Share Document