Biocompatible silver(I) complexes with heterocyclic thioamide ligands for selective killing of cancer cells and high antimicrobial activity – A combined in vitro and in silico study

Author(s):  
Despoina Varna ◽  
Elena Geromichalou ◽  
Eleni Papachristou ◽  
Rigini Papi ◽  
Antonios G. Hatzidimitriou ◽  
...  
2021 ◽  
Vol 16 (7) ◽  
pp. 180-196
Author(s):  
P. Sangavi ◽  
R. Rajapriya ◽  
Firthous Sannathul ◽  
K. Langeswaran ◽  
S. Gowtham Kumar

In this study, the aqueous and ethanol extracts of Musa sapientum peel and pulp were investigated for phytochemical screening and antioxidant activity. Antimicrobial activity and Minimal Inhibitory Concentration (MIC) were analyzed against three different microbial pathogens. From the reported GCMS analysis, the selected compounds were subjected to anti-cancer activity against breast cancer using in silico study. The highest antioxidant activity, presence of secondary metabolites and microbial activity were observed in a significant range. MIC examination revealed that the three different microbial pathogens were sensitive for the peel extract. . In silico study, out of 7 selected compounds, 4 compounds exhibit the highest docking score, binding free energy and acceptable pharmaceutical properties. Molecular dynamics simulation was performed for the top two compounds and the resulting analysis explained the protein-ligand stability and the results concluded that the lead compounds possess the highest stability. From this study, it was concluded that the selective bioactive compounds from Musa sapientum peel exhibited significant antioxidant and antimicrobial activity through in vitro analysis and also the bioactive compounds possessed anti-cancer property which was revealed by in silico investigation.


2021 ◽  
Vol 62 ◽  
pp. 102342
Author(s):  
Mohamad Mahani ◽  
Maryam Pourrahmani-Sarbanani ◽  
Mehdi Yoosefian ◽  
Faten Divsar ◽  
Seyedeh Maral Mousavi ◽  
...  

Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 252
Author(s):  
Eman H. Reda ◽  
Zienab T. Abdel Shakour ◽  
Ali M. El-Halawany ◽  
El-Sayeda A. El-Kashoury ◽  
Khaled A. Shams ◽  
...  

The genus Centaurea is recognized in folk medicine for anti-inflammatory, anti-itch, antitussive, purgative, astringent, and tonic activities. To study the chemical determinant for antimicrobial activity essential oils (EOs), five Centaurea species were analyzed including: C. scoparia, C. calcitrapa, C. glomerata, C. lipii and C. alexandrina. Conventional hydro-distillation (HD) and microwave-assisted extraction (MAE), as new green technologies, were compared for the extraction of essential oils. GC/MS analysis identified 120 EOs including mostly terpenoid except from C. lipii and C. alexandrina in which nonterpenoids were the major constituents. Major terpenoids included spathulenol, caryophyllene oxide and alloaromadendrene oxide-2. To probe antibacterial activity, potential EO inhibitors of a bacterial type II DNA topoisomerase, DNA gyrase B were screened via an in silico molecular docking approach. Spathulenol and alloaromadendrene oxide-2 possessed the best binding affinity in the ATP- binding pocket of Gyrase B enzyme. Principal component analysis and agglomerative hierarchical clustering were used for sample classification and revealed that sesquiterpenes contributed the most for accessions classification. In vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli and Aspergillus niger for all EOs were also evaluated. EOs from C. lipii, C. glomerata and C. calcitrapa exhibited significant MIC against S. aureus with an MIC value of 31.25 µg/mL.


2012 ◽  
Vol 130 ◽  
pp. S167
Author(s):  
Maria Ditsa ◽  
George Geromihalos ◽  
Eleftheria Tragoulia ◽  
Dimitra Markala ◽  
Chrisa Meleti ◽  
...  

2014 ◽  
Vol 23 (6) ◽  
pp. 3220-3226 ◽  
Author(s):  
Moacyr Jesus Barreto de Melo Rêgo ◽  
Marina Rocha Galdino-Pitta ◽  
Daniel Tarciso Martins Pereira ◽  
Juliana Cruz da Silva ◽  
Marcelo Montenegro Rabello ◽  
...  

2018 ◽  
Vol 120 (3) ◽  
pp. 3353-3361 ◽  
Author(s):  
Phongphat Obounchoey ◽  
Lueacha Tabtimmai ◽  
Praphasri Suphakun ◽  
Kannika Thongkhao ◽  
Chatchakorn Eurtivong ◽  
...  

2019 ◽  
Vol 16 (32) ◽  
pp. 894-898
Author(s):  
D. F. SILVA ◽  
H. D. NETO ◽  
M. D. L. FERREIRA ◽  
A. A. O. FILHO ◽  
E. O. LIMA

β-citronellol (3,7-dimethyl-6-octen-1-ol) has been exhibiting a number of pharmacological effects that creates interest about its antimicrobial potential, since several substances of the monoterpene class have already demonstrated to possess activity in this profile. In addition, the emergence of fungal species resistant to current pharmacotherapy poses a serious challenge to health systems, making it necessary to search for new effective therapeutic alternatives to deal with this problem. In this study, the antimicrobial profile of β-citronellol was analyzed. The Prediction of Activity Spectra for Substances (PASS) online software was used to study the antimicrobial activity of the β-citronellol molecule by the use of in silico analysis. In contrast, an in vitro antifungal study of this monoterpene was carried out. For this purpose, the Minimum Inhibitory Concentration (MIC) was determined by the microdilution technique in 96-well plates in Saboraud Dextrose Broth/RPMI against sensitive strains of Candida albicans, and this assay was performed in duplicate. In the in silico analysis of the antimicrobial profile, it was revealed that the monoterpene β-citronellol had a diverse antimicrobial bioactivity profile. For the antifungal activity, it presented a percentage value with Pa: 58.4% (predominant) and its MIC of 128 μg/mL, which was equivalent for all strains tested. The in silico study of the β-citronellol molecule allowed us to consider that the monoterpenoid is very likely to be bioactive against agents that cause fungal infections.


2020 ◽  
Vol 11 (1) ◽  
pp. 20190126 ◽  
Author(s):  
B. J. M. van Rooij ◽  
G. Závodszky ◽  
A. G. Hoekstra ◽  
D. N. Ku

The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico . In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.


2021 ◽  
Author(s):  
Vinayak Uppin ◽  
Shylaja M Dharmesh ◽  
Sarada R

Polysaccharides from natural sources play a significant role in the management of different cancer types including gastric cancer. In this study, we reported the effect of spirulina polysaccharide (Sp) on galectin-3 modulatory activity on gastric cancer cells. The polysaccharide was isolated from the spirulina biomass, characterized, and the in silico, in vitro studies are carried out to assess the bioactivities. The isolated Sp possessed average molecular weight of 1457 kDa, and galactose (42%) as major sugar along with Rhamnose, Arabinose, Xylose, and Mannose. Further, characterization of Sp by FT-IR and NMR spectrum indicated the presence of (β1-4D) galactose sugar with galactoarabinorhamnoglycan backbone. Among the monosaccharides, galactose showed highest binding affinity with galectin-3 protein as evidenced by the in silico interaction study. The obtained Sp, inhibited the proliferation of AGS gastric cancer cells by 48 % without affecting normal NIH/3T3 cells as opposed to doxorubicin, a known anticancer drug. Also, Sp exhibited galectin-3 mediated haemagglutination inhibition with MIC of 9.37 μg/mL compared to galactose 6.25 μg/mL, sugar specific to galectin-3. The Sp treatment significantly (p<0.05) lowered the expression of galectin-3 by 32 % compared to untreated control cells. In addition, Sp exhibited the potent cytoprotection in RBCs, Buccal cells, and DNA exposed to oxidants. Thus, the findings suggest that the polysaccharide from spirulina offer a promising therapeutic strategy in the management of gastric cancer in addition to its currently known nutritional and pharmaceutical applications.


Sign in / Sign up

Export Citation Format

Share Document