scholarly journals Comparative Study on the Essential Oils from Five Wild Egyptian Centaurea Species: Effective Extraction Techniques, Antimicrobial Activity and In-Silico Analyses

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 252
Author(s):  
Eman H. Reda ◽  
Zienab T. Abdel Shakour ◽  
Ali M. El-Halawany ◽  
El-Sayeda A. El-Kashoury ◽  
Khaled A. Shams ◽  
...  

The genus Centaurea is recognized in folk medicine for anti-inflammatory, anti-itch, antitussive, purgative, astringent, and tonic activities. To study the chemical determinant for antimicrobial activity essential oils (EOs), five Centaurea species were analyzed including: C. scoparia, C. calcitrapa, C. glomerata, C. lipii and C. alexandrina. Conventional hydro-distillation (HD) and microwave-assisted extraction (MAE), as new green technologies, were compared for the extraction of essential oils. GC/MS analysis identified 120 EOs including mostly terpenoid except from C. lipii and C. alexandrina in which nonterpenoids were the major constituents. Major terpenoids included spathulenol, caryophyllene oxide and alloaromadendrene oxide-2. To probe antibacterial activity, potential EO inhibitors of a bacterial type II DNA topoisomerase, DNA gyrase B were screened via an in silico molecular docking approach. Spathulenol and alloaromadendrene oxide-2 possessed the best binding affinity in the ATP- binding pocket of Gyrase B enzyme. Principal component analysis and agglomerative hierarchical clustering were used for sample classification and revealed that sesquiterpenes contributed the most for accessions classification. In vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli and Aspergillus niger for all EOs were also evaluated. EOs from C. lipii, C. glomerata and C. calcitrapa exhibited significant MIC against S. aureus with an MIC value of 31.25 µg/mL.

Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2017 ◽  
Vol 32 (5) ◽  
pp. 544-551 ◽  
Author(s):  
Roberta Tardugno ◽  
Federica Pellati ◽  
Ramona Iseppi ◽  
Moreno Bondi ◽  
Giacomo Bruzzesi ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 181
Author(s):  
Laila Nur Rohma ◽  
Laila Nur Rohma ◽  
Osfar Sjofjan ◽  
M. Halim Natsir

ABSTRAK                                                                        Imbuhan pakan unggas dapat berasal dari bahan herbal yang mengandung berbagai komponen aktif yang bermanfaat bagi pertumbuhan ternak.Temu putih dan jahe gajah dapat dimanfaatkan sebagai imbuhan pakan karena mengandung minyak atsiri yang dapat berperan sebagai agen antibakteri. Penelitian ini bertujuan untuk mengetahui komponen penyusun minyak atsiri dan aktivitas antimikroba pada rimpang temu putih dan jahe gajah. Penelitian dilakukan dengan percobaan in vitro menggunakan temu putih dan jahe gajah yang diolah menjadi bentuk ekstrak minyak atsiri temu putih dan jahe gajah sebagai materi uji komposisi penyusun minyak atsiri serta bentuktepung dan enkapsulasi sebagai materi uji aktivitas antimikroba. Komposisi minyak atsiri temu putih terdiri dari lima komponen penyusun dengan cis-1,7-octadien-3-yl acetat sebagai komponen utama. Komposisi minyak atsiri jahe gajah terdiri dari tujuh komponen dan benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-(CAS) ar-curcumene sebagai komponen utama. Minyak atsiri yang terkandung pada temu putih dan jahe gajah mempunyai peran dalam menghambat mikroba. Uji komposisi penyusun minyak atsiri menggunakan alat GC-MS dan uji aktivitas antimikroba menggunakan metode disc diffusion dan. Hasil dari uji aktivitas antimikroba menunjukkan bahwa temu putih dan jahe gajah dalam bentuk tepung dan enkapsulasi memiliki perbedaan yang sangat nyata (P<0,01) terhadap aktivitas antimikroba pada bakteri asam laktat, Escherichia coli dan Salmonella sp. Campuran temu putih dan jahe gajah (1:1) menunjukkan kemampuan terbaik dalam menghambat pertumbuhan bakteri patogen dengan diameter zona hambat 5,70±0,14 mm  (Escherichia coli) dan 6,88±0,45 mm (Salmonella sp.).Kata Kunci : antimikroba, fitobiotik, jahe gajah, minyak atsiri, temu putihABSTRACTThe poultry feed additives can contain herbal ingredients that contain various beneficial components for livestock growth. White turmeric and giant ginger can be used as feed additives because they contain essential oils that can be used as antibacterial agents. This study aims to determine the constituent components of essential oils and antimicrobial activity in white turmeric and giant ginger rhizomes. The study was carried out by in vitro experiments using white turmeric and giant ginger which were processed into the form of essential oil extract as material for the composition of essential oils test, and powder and encapsulation form as antimicrobial activity test material. The composition of essential oils of white turmeric consists of five constituent components with cis-1,7-octadien-3-yl acetate as the main component. The composition of giant ginger essential oil consists of seven components with benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS) ar-curcumene as the main component. Essential oils contained in the white turmeric and giant ginger have a role in inhibiting microbes. The composition of the essential oil tested using GC-MS and the antimicrobial activity test used the disc diffusion method. The results of the antimicrobial activity test showed that white turmeric and giant ginger in powder and encapsulation form had significant differences (P <0.01) on antimicrobial activity in lactic acid bacteria, Escherichia coli and Salmonella sp. The mixture of white turmeric and giant ginger (1: 1) showed the best ability to inhibit the growth of pathogenic bacteria with inhibitory zone diameters of 5.70 ± 0.14 mm (Escherichia coli) and 6.88 ± 0.45 mm (Salmonella sp.).Keywords: antimicrobial, essential oil, giant ginger, phytobiotic, white turmeric


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


Author(s):  
RAJA CHINNAMANAYAKAR ◽  
EZHILARASI MR ◽  
PRABHA B ◽  
KULANDHAIVEL M

Objective: The objective of this study was to evaluate in silico and in vitro anticancer activity for synthesized cyclohexane-1,3-dione derivatives. Methods: The new series of cyclohexane-1,3-dione derivatives were synthesized based on the Michael addition reaction. Further, the structures of the synthesized compounds were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. Then, the in silico molecular docking studies were carried out using AutoDock tool version 1.5.6 and AutoDock version 4.2.5.1 docking program. The antimicrobial activity was carried out using the agar disk diffusion method, and the in vitro anticancer activity was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for the synthesized compound. Results: In silico docking study, compound 5c showed good binding score and binding interactions with selected bacterial proteins and breast cancer protein. Further, compound (5a-5h) was tested for their antimicrobial activity and compound 5c was only tested for anticancer activity (human breast adenocarcinoma 3,4-methylenedioxyamphetamine-MB-231 cell line). Compound 5c was found to be the most active one of all the tested compounds. In the MTT assay compound, 5c showed the LC50 value of 10.31±0.003 μg/ml. In antimicrobial activity, the minimum inhibitory concentration of compound 5c is 2.5 mg/ml. Conclusion: An efficient synthesis of biologically active cyclohexane-1, 3-dione derivatives has been developed.


2018 ◽  
Vol 73 (9-10) ◽  
pp. 353-360 ◽  
Author(s):  
Nursenem Karaca ◽  
Betül Demirci ◽  
Fatih Demirci

Abstract Lavandula stoechas subsp. stoechas and Mentha spicata subsp. spicata are used for the treatment of sinusitis in Turkish folk medicine. The components of essential oils obtained by hydrodistillation were determined by gas chromatography-flame ionization detector (GC-FID), gas chromatography/mass spectrometry (GC/MS), and thin layer chromatography (TLC). Major components of L. stoechas and M. spicata oils were determined as camphor (46.7%) and carvone (60.6%), respectively. The antibacterial activity of essential oils and their main components were tested against the common selected sinusitis pathogens Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, Moraxella catarrhalis, and Pseudomonas aeruginosa using in vitro agar diffusion, microdilution, and vapor diffusion methods. As a result, the tested plant materials, which are locally and natively used against sinusitis, were relatively mild antibacterial (in vitro MICs 310–1250 μg/mL) in action. To use essential oils and their components safely in sinusitis therapy, further detailed in vivo experiments are needed to support their efficacy.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Sign in / Sign up

Export Citation Format

Share Document