scholarly journals In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains

2017 ◽  
Vol 10 (5) ◽  
pp. 586-592 ◽  
Author(s):  
Wongwarut Boonyanugomol ◽  
Kairin Kraisriwattana ◽  
Kamolchanok Rukseree ◽  
Kraisorn Boonsam ◽  
Panchaporn Narachai
2016 ◽  
Vol 60 (11) ◽  
pp. 6892-6895 ◽  
Author(s):  
Derek N. Bremmer ◽  
Karri A. Bauer ◽  
Stephanie M. Pouch ◽  
Keelie Thomas ◽  
Debra Smith ◽  
...  

ABSTRACTWe tested 76 extensively drug-resistant (XDR)Acinetobacter baumanniiisolates by the checkerboard method using only wells containing serum-achievable concentrations (SACs) of drugs. Checkerboard results were correlated by time-kill assay and clinical outcomes. Minocycline-colistin was the best combinationin vitro, as it inhibited growth in one or more SAC wells in all isolates. Patients who received a combination that inhibited growth in one or more SAC wells demonstrated better microbiological clearance than those who did not (88% versus 30%;P= 0.025). The checkerboard platform may have clinical utility for XDRA. baumanniiinfections.


2022 ◽  
Author(s):  
Kokab Jabeen ◽  
Sidrah Saleem ◽  
Faiqa Arshad ◽  
Zill-e-Huma ◽  
Shah Jahan ◽  
...  

Abstract Typhoid fever is a significant health problem in developing countries like Pakistan. Salmonella Typhi the causative agent of typhoid has developed resistant to almost all recommended antibiotics. Emergence of resistance to third generation cephalosporins has further complicated the situation and such strains are called as extensively drug resistant (XDR) Salmonella Typhi. Currently only available options are azithromycin and cabapenems. Recently few reports of azithromycin resistance have emerged from countries like Pakistan, India, Bangladesh and Nepal. As azithromycin is the only oral option available to treat XDR Typhoid, development of resistance may change treatment strategy altogether from out patient management to hospitalization of every patient. This may increase the burden on already weak health care system of countries like Pakistan. So there is dire need to look for the alternative treatment options. Manuka honey is well known for its therapeutic potential against wide range of bacteria including Salmonella Typhimurium. In this study 3 azithromycin resistant isolates were isolated and identified using disc diffusion, E-test and broth micro dilution methods and antibacterial activity, MIC and MBC of manuka honey was performed by agar well diffusion assay and broth micro dilution assay respectively. Manuka honey manifested significant antibacterial activity against all test isolates with zone of inhibition ranging from 7.3mm to 7.5mm, MIC and MBC values were between 10 to 15% v/v Here, we conclude that Manuka honey possess potent antibacterial activity and might be used as an alternative treatment option against azithromycin resistant XDR Typhid. However, further clinical trials are mandatory to validate our initial findings.


2010 ◽  
Vol 55 (1) ◽  
pp. 436-438 ◽  
Author(s):  
Thean Yen Tan ◽  
Tze Peng Lim ◽  
Winnie Hui Ling Lee ◽  
Suranthran Sasikala ◽  
Li Yang Hsu ◽  
...  

ABSTRACTThis study examined thein vitroeffects of polymyxin B, tigecycline, and rifampin combinations on 16 isolates of extensively drug-resistantAcinetobacter baumannii, including four polymyxin-resistant strains.In vitrosynergy was demonstrated in 19 (40%) of a possible 48 isolate-antibiotic combinations by time-kill methods, 8 (17%) by checkerboard methods, and only 1 (2%) by Etest methods. There was only slight agreement between Etest and checkerboard methods and no agreement between results obtained by other methods.


2014 ◽  
Vol 67 (9) ◽  
pp. 677-680 ◽  
Author(s):  
Xiaomeng Dong ◽  
Fengzhe Chen ◽  
Yajun Zhang ◽  
Haihong Liu ◽  
Yongjuan Liu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qin Peng ◽  
Fei Lin ◽  
Baodong Ling

Abstract Acinetobacter baumannii is a common pathogen of nosocomial infection, and its ability to form biofilms further contributes to its virulence and multidrug resistance, posing a great threat to global public health. In this study, we investigated the inhibitory effects of five biofilm inhibitors (BFIs) (zinc lactate, stannous fluoride, furanone, azithromycin, and rifampicin) on biofilm formation of nine extensively drug-resistant A. baumannii (XDRAB), and assessed the synergistic antibacterial effects of these BFIs when combined with one of four conventional anti-A. baumannii antibiotics (imipenem, meropenem, tigecycline, and polymyxin B). Each of the five BFIs tested was found to be able to significantly inhibit biofilm formation of all the clinical isolates tested under sub-minimal inhibitory concentrations. Then, we observed synergistic effects (in 22%, 56% and 11% of the isolates) and additive effects (56%, 44% and 44%) when zinc lactate, stannous fluoride and furanone were combined with tigecycline, respectively. When zinc lactate and stannous fluoride were each used with a carbapenem (imipenem or meropenem), in 33% and 56–67% of the isolates, they showed synergistic and additive effects, respectively. Additivity in > 50% of the isolates was detected when rifampicin was combined with imipenem, meropenem, tigecycline, or polymyxin B; and a 100% additivity was noted with azithromycin-polymyxin B combination. However, antagonism and indifference were noted for polymyxin B in its combination with zinc lactate and stannous fluoride, respectively. In conclusion, five BFIs in combination with four antibacterial drugs showed different degrees of in vitro synergistic and additive antibacterial effects against XDRAB.


2015 ◽  
Vol 59 (12) ◽  
pp. 7316-7319 ◽  
Author(s):  
J. Córdoba ◽  
N. M. Coronado-Álvarez ◽  
D. Parra ◽  
J. Parra-Ruiz

ABSTRACTExtensively drug-resistant (XDR)Acinetobacterspp. have emerged as a cause of nosocomial infections, especially under conditions of intensive care. Unfortunately, resistance to colistin is increasing and there is a need for new therapeutic options. We aimed to study the effect of some novel combinations against XDRAcinetobacter baumanniiin anin vitropharmacokinetics-pharmacodynamics (PK/PD) model. Three nonrelated clinical strains of XDRA. baumanniiwere investigated. Antibiotic-simulated regimens were colistin at 3 MU every 8 h (q8h) (first dose, 6 MU), daptomycin at 10 mg/kg of body weight q24h, imipenem at 1 g q8h, and ertapenem at 1 g q24h. Combination regimens included colistin plus daptomycin, colistin plus imipenem, and imipenem plus ertapenem. Samples were obtained at 0, 1, 2, 4, 8, and 24 h. Among the single-agent regimens, only the colistin regimen resulted in significant reductions in log10CFU per milliliter compared to the control for all the strains tested. Although colistin achieved bactericidal activity at 4 h, it was not able to reach the limit of detection (1 log10CFU/ml). One strain had significant regrowth at 24 h without the emergence of resistance. Daptomycin-colistin combinations led to a significant reduction in levels of log10CFU per milliliter that were better than those achieved with colistin as a single-agent regimen, reaching the limit of detection at 24 h against all the strains. The combination of imipenem plus ertapenem outperformed the colistin regimen, although the results did not reach the limit of detection, with significant regrowth at 24 h. Similarly, colistin-plus-imipenem combinations reduced the levels of log10CFU per milliliter at 8 h, with significant regrowth at 24 h but with development of resistance to colistin. We have shown some potentially useful alternatives for the treatment of extensively drug-resistantA. baumannii. Among them, the daptomycin-colistin combination was the most effective and should be investigated in future studies.


Sign in / Sign up

Export Citation Format

Share Document