scholarly journals In VitroAntibiotic Synergy in Extensively Drug-ResistantAcinetobacter baumannii: the Effect of Testing by Time-Kill, Checkerboard, and Etest Methods

2010 ◽  
Vol 55 (1) ◽  
pp. 436-438 ◽  
Author(s):  
Thean Yen Tan ◽  
Tze Peng Lim ◽  
Winnie Hui Ling Lee ◽  
Suranthran Sasikala ◽  
Li Yang Hsu ◽  
...  

ABSTRACTThis study examined thein vitroeffects of polymyxin B, tigecycline, and rifampin combinations on 16 isolates of extensively drug-resistantAcinetobacter baumannii, including four polymyxin-resistant strains.In vitrosynergy was demonstrated in 19 (40%) of a possible 48 isolate-antibiotic combinations by time-kill methods, 8 (17%) by checkerboard methods, and only 1 (2%) by Etest methods. There was only slight agreement between Etest and checkerboard methods and no agreement between results obtained by other methods.

2016 ◽  
Vol 60 (11) ◽  
pp. 6892-6895 ◽  
Author(s):  
Derek N. Bremmer ◽  
Karri A. Bauer ◽  
Stephanie M. Pouch ◽  
Keelie Thomas ◽  
Debra Smith ◽  
...  

ABSTRACTWe tested 76 extensively drug-resistant (XDR)Acinetobacter baumanniiisolates by the checkerboard method using only wells containing serum-achievable concentrations (SACs) of drugs. Checkerboard results were correlated by time-kill assay and clinical outcomes. Minocycline-colistin was the best combinationin vitro, as it inhibited growth in one or more SAC wells in all isolates. Patients who received a combination that inhibited growth in one or more SAC wells demonstrated better microbiological clearance than those who did not (88% versus 30%;P= 0.025). The checkerboard platform may have clinical utility for XDRA. baumanniiinfections.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qin Peng ◽  
Fei Lin ◽  
Baodong Ling

Abstract Acinetobacter baumannii is a common pathogen of nosocomial infection, and its ability to form biofilms further contributes to its virulence and multidrug resistance, posing a great threat to global public health. In this study, we investigated the inhibitory effects of five biofilm inhibitors (BFIs) (zinc lactate, stannous fluoride, furanone, azithromycin, and rifampicin) on biofilm formation of nine extensively drug-resistant A. baumannii (XDRAB), and assessed the synergistic antibacterial effects of these BFIs when combined with one of four conventional anti-A. baumannii antibiotics (imipenem, meropenem, tigecycline, and polymyxin B). Each of the five BFIs tested was found to be able to significantly inhibit biofilm formation of all the clinical isolates tested under sub-minimal inhibitory concentrations. Then, we observed synergistic effects (in 22%, 56% and 11% of the isolates) and additive effects (56%, 44% and 44%) when zinc lactate, stannous fluoride and furanone were combined with tigecycline, respectively. When zinc lactate and stannous fluoride were each used with a carbapenem (imipenem or meropenem), in 33% and 56–67% of the isolates, they showed synergistic and additive effects, respectively. Additivity in > 50% of the isolates was detected when rifampicin was combined with imipenem, meropenem, tigecycline, or polymyxin B; and a 100% additivity was noted with azithromycin-polymyxin B combination. However, antagonism and indifference were noted for polymyxin B in its combination with zinc lactate and stannous fluoride, respectively. In conclusion, five BFIs in combination with four antibacterial drugs showed different degrees of in vitro synergistic and additive antibacterial effects against XDRAB.


2016 ◽  
Vol 60 (9) ◽  
pp. 5238-5246 ◽  
Author(s):  
Yiying Cai ◽  
Tze-Peng Lim ◽  
Jocelyn Teo ◽  
Suranthran Sasikala ◽  
Winnie Lee ◽  
...  

ABSTRACTAgainst extensively drug-resistant (XDR)Enterobacter cloacae, combination antibiotic therapy may be the only option. We investigated the activity of various antibiotics in combination with polymyxin B using time-kill studies (TKS). TKS were conducted with four nonclonal XDRE. cloacaeisolates with 5 log10CFU/ml bacteria against maximum, clinically achievable concentrations of polymyxin B alone and in two-drug combinations with 10 different antibiotics. A hollow-fiber infection model (HFIM) simulating clinically relevant polymyxin B and tigecycline dosing regimens was conducted for two isolates over 240 h. Emergence of resistance was quantified using antibiotic-containing (3× MIC) media. Biofitness and stability of resistant phenotypes were determined. All XDRE. cloacaeisolates were resistant to all antibiotics except for polymyxin B (polymyxin B MIC, 1 to 4 mg/liter). All isolates harbored metallo-β-lactamases (two with NDM-1, two with IMP-1). In single TKS, all antibiotics alone demonstrated regrowth at 24 h, except amikacin against two strains and polymyxin B and meropenem against one strain each. In combination TKS, only polymyxin B plus tigecycline was bactericidal against all four XDRE. cloacaeisolates at 24 h. In HFIM, tigecycline and polymyxin B alone did not exhibit any killing activity. Bactericidal kill was observed at 24 h for both isolates for polymyxin B plus tigecycline; killing was sustained for one isolate but regrowth was observed for the second. Phenotypically stable resistant mutants with reducedin vitrogrowth rates were observed. Polymyxin B plus tigecycline is a promising combination against XDRE. cloacae. However, prolonged and indiscriminate use can result in resistance emergence.


2022 ◽  
Vol 14 (2) ◽  
Author(s):  
Rui Yang ◽  
Fang Li ◽  
Wei Wei Mao ◽  
Xin Wei ◽  
Xinzhu Liu ◽  
...  

Introduction: The incidence of postneurosurgical Acinetobacter baumannii ventriculitis/meningitis, primarily due to drug-resistant strains, has increased considerably in recent years. However, limited therapeutic options are available because most antibiotics poorly penetrate the blood-brain barrier, especially in pediatric patients. Case Presentation: A five-year-old boy developed ventriculitis due to extensively drug-resistant A. baumannii (XDRAB) after bilateral frontal external ventricular drainage for spontaneous intraventricular hemorrhage. The boy was safely and successfully treated with intraventricular (IVT)/intrathecal (ITH) polymyxin B together with intravenous tigecycline plus cefoperazone/sulbactam. Conclusions: In the present case, postneurosurgical XDRAB ventriculitis was closely associated with intraventricular hemorrhage and the placement of external ventricular drainage. IVT/ITH polymyxin B combined with intravenous tigecycline and cefoperazone sulbactam could be a therapeutic option against XDRAB ventriculitis in children.


2016 ◽  
Vol 113 (26) ◽  
pp. E3745-E3754 ◽  
Author(s):  
Philip Hinchliffe ◽  
Mariano M. González ◽  
Maria F. Mojica ◽  
Javier M. González ◽  
Valerie Castillo ◽  
...  

Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6–15 µM or 36–84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10–12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26–0.36 µM) than d-BTZs (26–29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120–zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 516
Author(s):  
Vipavee Rodjun ◽  
Jantana Houngsaitong ◽  
Preecha Montakantikul ◽  
Taniya Paiboonvong ◽  
Piyatip Khuntayaporn ◽  
...  

Drug-resistant Acinetobacter baumannii (A. baumannii) infections are a critical global problem, with limited treatment choices. This study aims to determine the in vitro activities of colistin–sitafloxacin combinations against multidrug-, carbapenem- and colistin-resistant A. baumannii (MDR-AB, CRAB, CoR-AB, respectively) clinical isolates from tertiary care hospitals. We used the broth microdilution checkerboard and time-kill methods in this study. Synergy was found using both methods. The colistin–sitafloxacin combination showed synergy in MDR-AB, CRAB, and CoR-AB isolates (3.4%, 3.1%, and 20.9%, respectively). No antagonism was found in any type of drug-resistant isolate. The majority of CoR-AB isolates became susceptible to colistin (95.4%). The time-kill method also showed that this combination could suppress regrowth back to the initial inocula of all representative isolates. Our results demonstrated that the colistin–sitafloxacin combination might be an interesting option for the treatment of drug-resistant A. baumannii. However, further in vivo and clinical studies are required.


Sign in / Sign up

Export Citation Format

Share Document